Polar Cremona Transformations

Igor V. Dolgachev

To W. Fulton

Let $F\left(x_{0}, \ldots, x_{n}\right)$ be a complex homogeneous polynomial of degree d. Consider the linear system \mathcal{P}_{F} generated by the partials $\frac{\partial F}{\partial x_{i}}$; we call it the polar linear system associated to F. The problem is to describe those F for which the polar linear system is homaloidal, that is, for which the map $\left(t_{0}, \ldots, t_{n}\right) \rightarrow\left(\frac{\partial F}{\partial x_{0}}(t), \ldots, \frac{\partial F}{\partial x_{n}}(t)\right)$ is a birational map. We shall call F with such property a homaloidal polynomial. In this paper we review some known results about homaloidal polynomials and also classify them in the cases when F has no multiple factors and either $n=3$ or $n=4$ and F is the product of linear polynomials.

I am grateful to Pavel Etingof, David Kazhdan, and Alexander Polishchuk for bringing to my attention the problem of classification of homaloidal polynomials and for various conversations on this matter. Also I thank Hal Schenck for making useful comments on my paper.

1. Examples

As was probably first noticed by Ein and Shepherd-Barron [ES], many examples of homaloidal polynomials arise from the theory of prehomogeneous vector spaces. Recall that a complex vector space V is called prehomogeneous with respect to a linear rational representation of an algebraic group G in V if there exists a nonconstant polynomial F such that the complement of its set of zeros is homogeneous with respect to G. The polynomial F is necessarily homogeneous and an eigenvector for G with some character $\chi: G \rightarrow \mathrm{GL}(1)$, and it generates the algebra of invariants for the group $G_{0}=\operatorname{Ker}(\chi)$. The reduced part $F_{\text {red }}$ of F (i.e., the product of irreducible factors of F) is determined uniquely up to a scalar multiple. A prehomogeneous space is called regular if the determinant of the Hessian matrix of F is not identically zero; this definition does not depend on the choice of F. We shall call F a relative invariant of V. Note that there is a complete classification of regular irreducible prehomogeneous spaces with respect to a reductive group G (see [KS]).

Theorem 1 [EKP; ES]. Let V be a regular prehomogeneous vector space. Then its relative invariant is a homaloidal polynomial.

[^0]
[^0]: Received March 10, 2000. Revision received April 20, 2000.
 Research partially supported by NSF Grant DMS 99-70460 and the Clay Mathematical Institute.

