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1. Introduction

1.1

Let M be a compact Kähler manifold. For a matrix Lie groupG, the represen-
tation varietyMG of the fundamental groupπ1(M) is defined as the quotient
Hom(π1(M),G)//G. HereG acts on the set Hom(π1(M),G) by pointwise con-
jugation: (gf )(s) = gf(s)g−1, s ∈ π1(M). A study of geometric properties
ofMG is of interest because of the relation to the problem of classifying Kähler
groups (a problem posed by J.-P. Serre in the1950s). For a simply connected nilpo-
tent Lie groupG, every element ofMG is uniquely determined by ad-harmonic
nilpotent matrix 1-formω onM such thatω∧ω represents 0 in the corresponding
de Rham cohomology group. This follows, for example, from a theorem on for-
mality of a compact Kähler manifold [DGMS]. The main result of our paper gives,
in particular, a similar description for elements ofMG with a simply connected
solvable Lie groupG. Our arguments are straightforward and based on cohomol-
ogy techniques only. As a consequence of the main theorem we obtain several
results on the structure of Kähler groups. We now proceed to a formulation of the
results.

It is well known thatMGLn(C) is equivalently characterized as moduli spaces
of flat bundles overM with structure group GLn(C). In this paper we consider a
family of C∞-trivial complex flat vector bundles overM. Every bundle from this
family is determined by a flat connection on the trivial bundleM ×Cn, that is, by
a matrix-valued 1-formω onM satisfying

dω − ω ∧ ω = 0. (1.1)

Moreover, we assume that the(0,1)-componentω2 of ω is an upper triangular
matrix form. Denote this class of connections byAtn.
Remark 1.1. Connections fromAtn determine (by iterated path integration) all
representations ofπ1(M) into simply connected complex solvable Lie groups.
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