The Composition Operators on the Space of Dirichlet Series with Square Summable Coefficients

Julia Gordon & Håkan Hedenmalm

0. Introduction

Let \mathcal{H} be the space of Dirichlet series with square summable coefficients; $f \in \mathcal{H}$ means that the function has the form

$$f(s) = \sum_{n=1}^{\infty} a_n n^{-s},$$
 (0.1)

with $\sum_{n=1}^{\infty} |a_n|^2 < +\infty$. By the Cauchy–Schwarz inequality, the functions in \mathcal{H} are all holomorphic on the half-plane $\mathbb{C}_{1/2} = \{s \in \mathbb{C} : \Re s > \frac{1}{2}\}$. The coefficients $\{a_n\}_n$ can be retrieved from the holomorphic function f(s), so that $||f||_{\mathcal{H}}^2 = \sum_{n=1}^{\infty} |a_n|^2$ defines a Hilbert space norm on \mathcal{H} . We consider the following problem.

For which analytic mappings $\Phi: \mathbb{C}_{1/2} \to \mathbb{C}_{1/2}$ is the composition operator $\mathcal{C}_{\Phi}(f) = f \circ \Phi$ a bounded linear operator on \mathcal{H} ?

In this paper, a complete answer to this question is found. In the process, we encounter the space \mathcal{D} of functions f, which in some (possibly remote) half-plane $\mathbb{C}_{\theta} = \{s \in \mathbb{C} : \Re s > \theta\}$ ($\theta \in \mathbb{R}$) admit representation by a convergent Dirichlet series (0.1). It is, in a sense, a space of germs of holomorphic functions. It is important to note that if a Dirichlet series converges on \mathbb{C}_{θ} then it converges absolutely and uniformly on \mathbb{C}_{ϑ} , provided $\vartheta > \theta + 1$ (see e.g. [3]). In terms of the coefficients, $f \in \mathcal{D}$ means that a_n grows at most polynomially in the index variable n. We shall use the notation \mathbb{C}_+ to denote the right half-plane, $\mathbb{C}_+ = \{s \in \mathbb{C} : \Re s > 0\}$, although strictly speaking we probably ought to keep the notation consistent and write \mathbb{C}_0 instead. Throughout the paper, the term *half-plane* will be used in the restricted sense of a half-plane of the type \mathbb{C}_{θ} for some $\theta \in \mathbb{R}$.

It should be mentioned that, by the closed graph theorem, every composition operator $C_{\Phi} \colon \mathcal{H} \to \mathcal{H}$ is automatically bounded.

1. Results

The first question that arises naturally in connection with this problem is: For what functions Φ analytic in some half-plane \mathbb{C}_{θ} and mapping it into $\mathbb{C}_{1/2}$ does

Received July 8, 1998. Revision received April 27, 1999.

Michigan Math. J. 46 (1999).