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I. Introduction

For every n > 0, we define A™" to be the Banach space of all functions f analytic
in the unit disc U such that

I flla= = sup| F@|1 — |z]H)" < oo.

zelU

If fe A" and if I C U is any subset then we can define
£ Irllan = sup| F@IA = [z*)",
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Thus we always have

Nflrllas < [ flla=.

I' is called an A™" sampling set if there exists a constant L such that, for every
feA™,
Iflla-» = LI frlla-n.

The smallest such L, designated L(T", n) is called the sampling constant of T".
In an important paper, Seip [4] gave a complete characterization of A™ sampling
sets in terms of a certain density that he defined.

The space A~ is defined by

A=A
that is, it is the algebra of functions analytic in U satisfying

M
| f(z2)] < ————— for some constants M and .
(1 —|z)”
Equipped with the inductive limit topology, A~ becomes a topological alge-

bra. The zero sets and closed ideals of A™° were completely characterized in [2]
and [3].
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