Sampling Sequences for $A^{-\infty}$

C. Horowitz, B. Korenblum, & B. Pinchuk

I. Introduction

For every n > 0, we define A^{-n} to be the Banach space of all functions f analytic in the unit disc U such that

$$||f||_{A^{-n}} \equiv \sup_{z \in U} |f(z)| (1-|z|^2)^n < \infty.$$

If $f \in A^{-n}$ and if $\Gamma \subset U$ is any subset then we can define

$$||f|_{\Gamma}||_{A^{-n}} = \sup_{z \in \Gamma} |f(z)|(1-|z|^2)^n.$$

Thus we always have

$$||f|_{\Gamma}||_{A^{-n}} \leq ||f||_{A^{-n}}.$$

 Γ is called an A^{-n} sampling set if there exists a constant L such that, for every $f \in A^{-n}$,

$$||f||_{A^{-n}} \leq L||f||_{\Gamma}||_{A^{-n}}.$$

The smallest such L, designated $L(\Gamma, n)$ is called the *sampling constant* of Γ . In an important paper, Seip [4] gave a complete characterization of A^{-n} sampling sets in terms of a certain density that he defined.

The space $A^{-\infty}$ is defined by

$$A^{-\infty} = \bigcup_{n>0} A^{-n};$$

that is, it is the algebra of functions analytic in U satisfying

$$|f(z)| \le \frac{M}{(1-|z|)^n}$$
 for some constants M and n .

Equipped with the inductive limit topology, $A^{-\infty}$ becomes a topological algebra. The zero sets and closed ideals of $A^{-\infty}$ were completely characterized in [2] and [3].

Received September 25, 1996. Revision received November 26, 1996.

This research was partially supported by the Minerva Foundation in Germany through the Emmy Noether Institute.

Michigan Math. J. 44 (1997).