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1. Introduction

The concept of Poisson structure plays an important role in mathematics and
physics. Apparently, Poisson structures in local coordinates were first consid-
ered in 1875 in the work of Lie [20]; from the mathematical viewpoint, such a
theory has been developed since the early 1970s by Lichnerowicz [19], Weinstein
[26], and others. A Poisson manifold is a smooth manifold M endowed with a
Poisson bracket, that is, a Lie bracket { , } on the algebra of smooth functions on
M satisfying Leibniz’s rule. The existence of a Poisson bracket on M is equiva-
lent to the existence of a skew-symmetric contravariant 2-tensor G on M satisfying
[G, G] = 0, where [, ] denotes the Schouten—Nijenhuis bracket [1].

For a Poisson manifold M, Koszul [15] introduced a differential operator A:
A (M) — A¥1(M), defined by A = [i(G), d], where i (G) denotes the contrac-
tion by G and d is the exterior derivative of M. We call it the Koszul differential
and shall write 8§ instead of A. Since §2 = 0 [4; 15], it defines the so-called canon-
ical homology of M. Moreover, as in the Riemannian case, a Poisson Laplacian
A = d§ + éd, which is identically zero, can be defined [15]. A k-form « is called
harmonic (with respect to the Poisson structure) if da = §a = 0. In [4], Brylinski
proposed the following.

PrROBLEM. Give conditions on a compact Poisson manifold M ensuring that any
de Rham cohomology class has a harmonic (with respect to the Poisson structure)
representative «, that is, do = da = 0.

In the particular case of symplectic manifolds, this problem has already been solved
[4; 8; 21]. More precisely, Brylinski [4] proved that for compact K&hler manifolds
this problem has an affirmative solution. However, we exhibit in [8] an exam-
ple of a compact symplectic manifold M* and a de Rham cohomology class a on
M* such that a does not admit harmonic representatives. Independently, Mathieu
[21] proved that a compact symplectic manifold has the conditions of Brylinski’s
problem if and only if it satisfies the hard Lefschetz theorem.

Almost cosymplectic manifolds are another important class of Poisson mani-
folds. Remember that an almost cosymplectic manifold is a (2n + 1)-dimensional
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