Multipliers and Cyclic Vectors in the Bloch Space

LEON BROWN & A. L. SHIELDS*

I. Introduction

In this paper we study the cyclic vectors in \mathfrak{B} , the Bloch space with the weak* topology, and in \mathfrak{B}_0 , the "little" Bloch space with the norm topology. A result is obtained which implies that every outer function in $\mathfrak{B}(\mathfrak{B}_0)$ is cyclic. We also obtain a simple characterization of multipliers in \mathfrak{B} and \mathfrak{B}_0 .

The Bloch space \mathfrak{B} in the open unit disc D in the complex plane is the space of all those analytic functions f such that $(1-|z|^2)f'(z)$ is bounded in D. We norm \mathfrak{B} as follows:

(1)
$$||f|| = |f(0)| + \sup\{(1-|z|^2)|f'(z)| : z \in D\}.$$

With this norm \mathfrak{B} is a Banach space and \mathfrak{B}_0 a closed subspace. Here \mathfrak{B}_0 , sometimes called the "little" Bloch space, denotes the set of those f in \mathfrak{B} for which $(1-|z|^2)f'(z) \to 0$ as $|z| \uparrow 1$. For information about \mathfrak{B} and \mathfrak{B}_0 , see [1] and [2].

The space \mathfrak{B} with the norm (1) is isometric to the second dual \mathfrak{B}_0^{**} (see [9]). Furthermore, the polynomials are norm dense in \mathfrak{B}_0 and in \mathfrak{B}_0^* , and are weak* dense in \mathfrak{B} . Note that \mathfrak{B} is not norm separable.

We have a growth estimate for Bloch functions (see, e.g., [3, Eq. (4)]):

(2)
$$|f(z)| \le \left\{1 + \log \frac{1}{1 - |z|}\right\} ||f||.$$

Thus \mathfrak{B} is contained in L_a^p (the analytic L^p functions in D) for $p < \infty$. For the Hardy spaces we have $H^{\infty} \subset \mathfrak{B}$, but H^p is not contained in \mathfrak{B} for any $p < \infty$; also, \mathfrak{B} is not contained in the Nevanlinna class.

The second section of this paper deals with multipliers in \mathfrak{B} . A complex-valued function ϕ in D is called a *multiplier on* \mathfrak{B} if $\phi\mathfrak{B} \subset \mathfrak{B}$. By M_{ϕ} we denote the operator of multiplication by $\phi: M_{\phi}f = \phi f$ ($f \in \mathfrak{B}$). The set of all multipliers will be denoted by $M(\mathfrak{B})$. An application of the closed graph theorem shows that M_{ϕ} is a bounded linear transformation on \mathfrak{B} . Hence it has a finite norm $\|M_{\phi}\|$.

Michigan Math. J. 38 (1991).

Received February 21, 1990. Revision received September 24, 1990.

^{*}Deceased. The research of this author was supported in part by the National Science Foundation.