THE BOUNDARY BEHAVIOR OF BLOCH FUNCTIONS AND UNIVALENT FUNCTIONS

J. M. Anderson and L. D. Pitt

1. Introduction. The function $f(z) = \sum_{n=0}^{\infty} a_n z^n$, analytic for $z \in D = \{z : |z| < 1\}$, is called a Bloch function if the norm

$$||f|| = \sup\{(1-|z|^2)|f'(z)|: z \in D\} + |f(0)|$$

is finite. The set of such functions forms a Banach space B and the subspace of B consisting of those $f \in B$ for which $(1-|z|^2)|f'(z)| \to 0$ as $|z| \to 1-$ is denoted by B_0 . The Zygmund class Λ^* consists of those (complex-valued) continuous functions F(t) of period 2π for which

$$F(t+h)+F(t-h)-2F(t)=O(|h|)$$

uniformly in t. If the above second difference is o(|h|) as $|h| \to 0$ then we say that $f \in \lambda^*$.

The spaces Λ^* and λ^* are also Banach spaces with the obvious norm. Moreover,

(1)
$$f(z) = \sum_{n=0}^{\infty} a_n z^n \in B \iff F(t) = \sum_{n=1}^{\infty} \frac{a_n}{n} e^{int} \in \Lambda^*$$

and similarly $f \in B_0$ if and only if $F \in \lambda^*$. Thus the space B is isomorphic under the operation of integration to that subspace of Λ^* consisting of functions whose negative Fourier coefficients vanish. In [2] we considered the spaces of real-valued functions in Λ^* and λ^* , but in the present paper we study the complex case. This eventually resolves itself into a consideration of the radial or boundary behavior of Bloch functions and univalent functions.

As in [1], an important class of examples is given by lacunary series

$$f(z) = \sum_{k=0}^{\infty} a_k z^{n_k},$$

where $n_{k+1}/n_k \ge q > 1$ for all k, and

$$||(a_k)||_{\infty} = \sup\{|a_k|: k \ge 0\}$$

is finite. Such functions belong to B and also to B_0 if $a_k \to 0$ as $k \to \infty$. If, moreover,

(2)
$$\sum_{k=0}^{\infty} |a_k|^2 = \infty,$$

then such functions f(z) have finite radial limits $\lim_{r\to 1^-} f(re^{i\theta})$ only for a set E of values of θ of measure zero. Also the corresponding functions F(t) have finite derivatives only in such a set E.

Received October 30, 1987.

The second author's research was supported by National Science Foundation Grants DMS-8500882 and DMS-8701212.

Michigan Math. J. 35 (1988).