THE ESSENTIAL SPECTRUM OF A HANKEL OPERATOR WITH PIECEWISE CONTINUOUS SYMBOL

Stephen Power

A Hankel operator S on a complex Hilbert space with complete orthonormal basis $\{e_n; n = 0, 1, 2, ...\}$ is one whose representing matrix has the form

$$S_{ij} = c_{i+j}, \quad i, j = 0, 1, 2,$$

A classical theorem of Nehari [6] shows that a sequence $(c_n)_{n=0}^{\infty}$ defines a bounded Hankel operator if and only if it is the sequence of positive Fourier coefficients of an essentially bounded measurable function ϕ on the unit circle. Hartman subsequently showed that S is compact if and only if ϕ can be chosen to be continuous (see [4] or [1]).

In this note we determine the essential spectrum of S when ϕ is a function possessing left and right limits at every point on the circle.

Notation. Let L^2 be the Hilbert space of square integrable functions on the unit circle T with the usual orthonormal basis $\{z^n; n=0,\pm 1,\pm 2,\ldots\}$. The unitary operator J on L^2 is defined by $Jz^n=z^{-n}$ and we shall let P denote the orthogonal projection of L^2 onto the Hardy subspace H^2 spanned by $\{z^n; n=0,1,2,\ldots\}$.

For an essentially bounded measurable function φ in L^{∞} , the Toeplitz operator T_{φ} , on H^2 , is defined by $T_{\varphi}=PM_{\varphi}\,|\,H^2$ where M_{φ} is the usual multiplication operator on $L^2.$ We call φ the symbol of the Toeplitz operator $T_{\varphi}.$ The Hankel operator on H^2 , with symbol φ in L^{∞} , is defined by $S_{\varphi}=PJM_{\varphi}\,|\,H^2.$

Let PC denote the collection of functions on T which possess left and right limits at each point. For ϕ in PC and α in T we shall write

$$\phi_{\alpha} = \frac{1}{2} \lim_{t \to 0+} \{ \phi(\alpha e^{it}) - \phi(\alpha e^{-it}) \}$$

and call ϕ_{α} the jump of ϕ at α .

Let T' denote the non-real points of T and, for γ , $\nu \in \mathbb{C}$, let $[\gamma, \nu]$ denote the line segment joining γ and ν . We shall prove the following:

THEOREM 1. Let ϕ be a function in PC. Then

$$\sigma_{e}\left(S_{\varphi}\right) = \left[0, i \, \varphi_{1}\right] \, \cup \, \left[0, i \, \varphi_{-1}\right] \, \cup \, \left[-\left(-\varphi_{\alpha} \, \varphi_{\tilde{\alpha}}\right)^{1/2}, + \left(-\varphi_{\alpha} \, \varphi_{\tilde{\alpha}}\right)^{1/2}\right].$$

Received December 8, 1976.

Michigan Math. J. 25(1978).