REGULAR NEIGHBORHOODS IN TOPOLOGICAL MANIFOLDS

Erik Kjær Pedersen

Regular neighborhoods have proved to be a very useful tool in the theory of PL manifolds. In this paper we want to make a very easy construction of regular neighborhoods in the topological category. F. E. A. Johnson [6] has constructed regular neighborhoods in topological manifolds, but only in the case of nonintersection with the boundary. R. D. Edwards [4] has announced a very general construction of regular neighborhoods; see also [3]. The present construction has the advantage of allowing a "relative" version, (Theorem 13), in the sense that if L is a complex, K is a subcomplex, and L is locally tamely embedded in a topological manifold V, then one may find a regular neighborhood of K in V, intersecting L in a regular neighborhood of K in L, in the usual PL sense. This is used in [10] to prove embedding theorems for topological manifolds. In [11] we have a proof that the opposite procedure is possible; namely, finding a spine of a topological manifold.

We should emphasize that the regular neighborhoods we obtain are mapping cylinder neighborhoods; *i.e.*, if $K \subseteq N$, where N is a regular neighborhood of K, then there is a map $\pi \colon \partial N \to K$ such that N is homeomorphic to the mapping cylinder of π (Theorem 15).

Let K be a compact topological space with a given simple homotopy structure; i.e., of the homotopy type of a finite CW-complex, with the homotopy equivalence specified up to torsion.

Definition 1. A regular neighborhood N_2 of K in V is a locally flat, compact submanifold of V, of codimension 0, which is a topological neighborhood of K such that the inclusion $K \subseteq N$ is a simple homotopy equivalence, and K is a strong deformation retract of N. We also require that $\partial N \subseteq N$ - K induces an isomorphism on the fundamental group for every component.

Definition 2. A regular neighborhood N of K \subset V is said to meet the boundary regularly if N \cap ∂ V is a regular neighborhood of L in ∂ V and η (N) = $\overline{\partial}$ N - \overline{N} \cap $\overline{\partial}$ V meets ∂ V transversally.

Remark 3. If a regular neighborhood meets the boundary regularly, it then follows from van Kampen's theorem that $\eta(N) \to N$ - K induces an isomorphism on the fundamental group.

Definition 4. $K \subset V$ is said to have arbitrarily small regular neighborhoods if for every neighborhood U of K there is a regular neighborhood N of K in V such that $N \subset U$.

Definition 5. Two regular neighborhoods of $K \subseteq V$, N and \widetilde{N} , are said to be equivalent if N is homeomorphic to \widetilde{N} by a homeomorphism which is the identity on a neighborhood of K. If N and \widetilde{N} meet the boundary regularly, the homeomorphism is required to restrict to a homeomorphism of $N \cap \partial V$ to $\widetilde{N} \cap \partial V$.

We now want to change a regular neighborhood into one that meets the boundary regularly.

Received November 26, 1975. Revisions received November 4, 1976 and January 24, 1977.

Michigan Math. J. 24 (1977).