EXTRINSIC SPHERES IN IRREDUCIBLE HERMITIAN SYMMETRIC SPACES

Chorng-Shi Houh

1. INTRODUCTION

Let M be an irreducible Hermitian symmetric space. Then \widetilde{M} is simply connected and its canonical Hermitian structure is Kählerian. Let 2m be the real dimension of \widetilde{M} . An n-dimensional submanifold N of \widetilde{M} is called an extrinsic sphere if it is umbilical and has parallel, nonzero mean curvature vector. In Remark 2 of [2], Chen indicated that if the rank of \widetilde{M} is ℓ , then \widetilde{M} admits extrinsic spheres of dimensions $\leq \ell-1$ with flat normal connections; namely, extrinsic spheres of maximal flat totally geodesic submanifolds of \widetilde{M} . In this paper we investigate extrinsic spheres with flat normal connections in irreducible Hermitian symmetric spaces and shall prove the following.

THEOREM. If N is an n-dimensional (n \geq 2) complete, simply connected extrinsic sphere with flat normal connection in an irreducible Hermitian symmetric space \widetilde{M} , then n \leq rank \widetilde{M} and N is isometric to a standard n-sphere.

2. PRELIMINARIES

 \widetilde{M} is always assumed to be an irreducible Hermitian symmetric space of real dimension 2m (m>1). Let J and g be the complex structure and Kähler metric of \widetilde{M} , let N be an n-dimensional submanifold of \widetilde{M} , and let $\widetilde{\nabla}$ and ∇ be the covariant differentiations on \widetilde{M} and N, respectively. The second fundamental form h of N in \widetilde{M} is defined by $h(X,Y)=\widetilde{\nabla}_XY-\nabla_XY$, where X,Y are vector fields tangent to N. Then h is symmetric, with values in the normal bundle. For a vector field ξ normal to N we write $\widetilde{\nabla}_X\xi=-A_\xi X+D_X\xi$, where $-A_\xi X$ and $D_X\xi$ denote the tangential and normal components of $\widetilde{\nabla}_X\xi$. If $D_X\xi=0$, ξ is said to be *parallel*. If h(X,Y)=g(X,Y)H, where H=(trace h)/n is the mean curvature vector of N in \widetilde{M} , N is said to be *umbilical*. Let \widetilde{R} , R, and R^\perp be the curvature tensors associated with $\widetilde{\nabla}$, ∇ , and D, respectively. Let

$$(\overline{\nabla}_X h)(Y, Z) = D_X(h(Y, Z)) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z)$$

for X, Y, Z tangent to N. Then the equations of Codazzi and Ricci are

$$\begin{split} &(\widetilde{R}(X, Y)Z)^{\perp} = (\overline{\nabla}_{X} h) (Y, Z) - (\overline{\nabla}_{Y} h) (X, Z); \\ \widetilde{R}(X, Y; \xi, \eta) = R^{\perp}(X, Y, \xi, \eta) - g([A_{\xi}, A_{\eta}]X, Y), \end{split}$$

Received March 23, 1977. Revision received May 16, 1977.

Michigan Math. J. 24 (1977).