COMPACT FAMILIES OF UNIVALENT FUNCTIONS
Eric P. Kronstadt

Let D be a proper domain in the complex plane C, H(D) the space of holomor-
phic functions on D, and Hy(D) the subset of univalent functions in H(D). We endow
H(D) with the topology of uniform convergence on compact sets. If
L=(£;, £2, *--, £,) is an n-tuple of continuous, linearly independent, linear
functionals on H(D), and Q = (q;, q2, ***, q,) € C", define

F(, L, Q) = {t e H(D): L) = Q}.

In [1], Hengartner and Schober proved

THEOREM A. If & = (D, (£, £,), (a1, 42)) is nonempty, and (L, £,)
satisfies
(*) 01(1) 2,(g) # £,(1) ¢4(g), for every g € H (D),

then & is compact. Moveover, if D has a “strongly dense boundary” and F is non-
empty and compact, then (*) holds.

This paper is concerned with generalizing Theorem A to the case of more than
two linear functionals.

Clearly, if (*) held for one pair of the n linear functionals £;, £, -+, £,, then
¥ (D, L, Q) would be compact whenever it were nonempty. On the other hand, as the
following example shows, % may be compact even if (¥) fails for each pair of the n
linear functionals.

Example. Let D be the unit disk A = {z: |z| <1}; let ¢,(f) = £"(0) +£'(0),
2,(f) = £(0), £3(f) =£"(0); and let q; = 1, qz =q3 = 0. If I(z) =z, then I € # (4, L, Q);
so ¥ (A, L, Q) is nonempty. Clearly,

F(b, L, Q = {f € Hy(a): £(0) =0, £(0) = 1} N {f € H(A): £"(0) =0} .
The first set on the right-hand side is well known to be compact, and the second is
closed. Therefore, % (A, L, Q) is nonempty and compact. On the other hand, if

h(z) =z - z2/2, then h € H,(A), and

0

2,(1) 2,(h) = £,(1) £,(h)

0,(1) 251 = 25(1) £,(1)

i
I

0,(1) 25(0) = £5(1) 2,(1) .

Thus, (*) fails for each pair of the three linear functionals.

The generalization of Theorem A we wish to explore arises from the following
observation. Let Ker(L) denote the kernel of L.
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