CONVEXITY PROPERTIES OF OPERATOR RADII ASSOCIATED WITH UNITARY ρ -DILATIONS

Tsuyoshi Ando and Katsuyoshi Nishio

1. INTRODUCTION

For $\rho>0$, let \mathscr{C}_{ρ} denote the class of bounded linear operators T on a Hilbert space \mathscr{H} whose powers admit a representation

$$T^n h = \rho P U^n h$$
 (h $\epsilon \mathcal{H}$; n = 1, 2, ...),

where U is a unitary operator (called a *unitary* ρ -dilation) on some Hilbert space $\mathcal K$ containing $\mathcal K$ as a subspace, and where P is the projection from $\mathcal K$ to $\mathcal K$. Intrinsic characterizations of operators of class $\mathscr E_\rho$ were given by B. Sz.-Nagy and C. Foiaş [6]. Later, J. A. R. Holbrook [3] and J. P. Williams [7] introduced the concept of the operator radius $w(\rho)$ of an operator T, relative to $\mathscr E_\rho$. The operator radius is defined by the formula

$$w(\rho) = w(\rho; T) = \inf \{ \gamma: \gamma > 0, \gamma^{-1} T \in \mathscr{C}_{\rho} \}.$$

It is known that w(1) coincides with the norm $\|T\|$ while w(2) is simply the numerical radius

$$w(2) = \sup \{ |(Th, h)| : ||h|| = 1 \}.$$

Holbrook [3], [4] investigated basic properties of $w(\rho)$. Among other things, he showed that $w(\rho)$ is a nonincreasing function of ρ , that

$$w(1) \leq \rho \cdot w(\rho) < (2\rho' - \rho) \cdot w(\rho') \qquad (\rho < \rho'),$$

and that $w(\infty) = \lim_{\rho \to \infty} w(\rho)$ coincides with the spectral radius of T.

Further, Holbrook [4] proved the convexity of $w(\rho)$ on (0, 1), and he asked whether $w(\rho)$ is convex on the whole interval $(0, \infty)$. Our main purpose in this paper is to prove that $\log w(\rho)$ is convex on $(0, \infty)$.

In Section 2, using function-theoretic methods, we shall show that $\log w(\rho)$ and $\log \{(e^{\xi}+1)w(e^{\xi}+1)\}$ are convex on $(0,\infty)$ and $(-\infty,\infty)$, respectively. Incidentally, we point out the reciprocity law

$$\rho \cdot w(\rho) = (2 - \rho) \cdot w(2 - \rho) \qquad (0 < \rho < 2),$$

which has hitherto been overlooked. As a consequence of convexity, we show that $\rho \cdot w(\rho)$ is decreasing on (0, 1) and increasing on $(1, \infty)$.

Received December 11, 1972.

Michigan Math. J. 20 (1973).