ZEROS OF LIPSCHITZ FUNCTIONS ANALYTIC IN THE UNIT DISC

B. A. Taylor and D. L. Williams

1. INTRODUCTION

Let D denote the open unit disc in the complex plane, and let \overline{D} denote its closure. Let Lip α be the class of functions f analytic in D and satisfying a Lipschitz condition of order α ,

$$|f(z) - f(z')| \leq C |z - z'|^{\alpha}.$$

L. Carleson [1] gave a necessary and sufficient condition for a closed set $E \subset \partial D = \overline{D} \setminus D$ to be the zero set of a function $f \in \text{Lip } \alpha$. If $\rho(z, E)$ denotes the Euclidean distance from z to E, then evidently (1.1) implies that

$$\log |f(z)| < \alpha \log \rho(z, E) + \log C$$

and consequently

(1.2)
$$\int_{-\pi}^{\pi} \log \rho(e^{i\theta}, E) d\theta > -\infty,$$

by a well-known theorem of F. Riesz. Conversely, Carleson showed that if (1.2) holds, then there exists an outer function f such that $f(e^{i\theta}) = 0$ if and only if $e^{i\theta} \in E$, and that for each integer m > 0 the function f can be constructed so that it belongs to the class A^m of functions that are analytic in D and whose first m derivatives are continuous in \overline{D} . W. P. Novinger [3] and we extended this result independently by showing that f can be constructed so that it belongs to the class

 $A^{\infty} = \bigcap_{m=1}^{\infty} A^m$. Also, a result has recently been proved by Carleson and S. Jacobs that implies the following: if $f \in A = A^0$, if f is an outer function, and if $|f(e^{i\theta})|$ has 2m continuous derivatives as a function of θ , then $f \in A^m$. This theorem yields an easy proof of the extension of Carleson's theorem discussed above.

In this paper, we solve the analogous problem for zero sets in \overline{D} . In the following, Z denotes a closed subset of \overline{D} such that $Z \cap D$ is countable. To each element of $Z \cap D$ we assign a multiplicity, and we let $\{z_j\}_{j=1}^\infty$ be an enumeration of $Z \cap D$ with each element of $Z \cap D$ appearing in the sequence a number of times equal to its multiplicity. Also, $\rho(z)$ ($z \in \overline{D}$) denotes the Euclidean distance from z to Z.

THEOREM. In order that for some α (0 < $\alpha \le 1$) there exist a function $f \in \text{Lip } \alpha$ whose zero set is Z (counting multiplicities), it is necessary that

Received March 11, 1970.

B. A. Taylor thanks the National Science Foundation for support.

Michigan Math. J. 18 (1971).