CONCORDANCE CLASSES OF SPHERE BUNDLES OVER SPHERES

James R. Munkres

The purpose of this paper is to provide a proof for a theorem announced in [5] concerning the classification, up to concordance, of differentiable structures on manifolds that are sphere bundles over spheres. This is finer than classification up to diffeomorphism; R. DeSapio [1] has proved results on the latter problem that are interesting to compare with ours.

We recall that a *concordance* between two differentiable structures β and β' on a nonbounded PL (piecewise-linear) manifold K is a differentiable structure γ on the PL manifold K × I that equals β on K × 0 and β' on K × 1. If we denote the set of equivalence classes under the relation of concordance by C(K), the theorem in question may be stated as follows.

THEOREM. Let K be the total space of an S^j -bundle over S^i whose characteristic map may be pulled back to an element α of $\pi_{i-1}(SO(j))$. Then there exists a one-to-one correspondence

$$C(K) \longleftrightarrow \Gamma_i \oplus A \oplus [\Gamma_{i+j}/\text{image } \tau_{\alpha}],$$

where A is a subgroup of Γ_j . If α can be pulled back to an element α' of π_{i-1} (SO(j - 1)), then $A = \Gamma_i \cap (\text{kernel } \tau_{\alpha'})$.

Here Γ_n denotes the group of diffeomorphisms of S^{n-1} , modulo the subgroup consisting of those diffeomorphisms extendable to B^n . It is isomorphic with $C(S^n)$, the operation being connected sum. For $n \geq 5$, $C(S^n)$ is equal to the group Θ_n of (oriented diffeomorphism classes of) differentiable structures on S^n . The group Γ_n is abelian and finite; it vanishes for $n \leq 6$.

The maps τ_{α} : $\Gamma_j \to \Gamma_{i+j-1}$ and τ_{α} : $\Gamma_{j+1} \to \Gamma_{i+j}$ are the so-called "Milnor-Munkres-Novikov" twisting homomorphisms. (See [5, p. 189], where the homomorphism

$$\tau$$
: π_k (SO(m - 1)) $\otimes \Gamma_m \to \Gamma_{m+k}$

is defined; in the present paper we denote $\tau(\alpha, x)$ by $\tau_{\alpha}(x)$.)

Examples. Suppose K is the nontrivial S^j -bundle over S^2 (j>1); we compare its concordance classes with those of the trivial bundle $S^j\times S^2$. Of course, C(K) is never larger than $C(S^j\times S^2)$, since $\tau_\alpha=0$ if $\alpha=0$; and there exist many values of j for which C(K) is strictly smaller, for example, j=7, 13, 14, 15, and $j\equiv 0$ or $j\equiv 1$ modulo 8. This follows from the fact that if $\alpha(k)$ is the nontrivial element of $\pi_1(SO(k))$ (k>2), then $\tau_{\alpha(k)}$: $\Gamma_{k+1}\to\Gamma_{k+2}$ is nontrivial for k=7, 13, 15 and for $k\equiv 0\pmod 8$. (See J. Levine [4], noting that his $\delta(\sigma,0;0,\alpha)$ is just our $\tau_{\alpha}(\sigma)$.)

As a second example, take K to be an S^j-bundle over Sⁱ having two independent cross-sections (so that α' exists), where j is fairly close to i $(1 \le i - 3 \le j \le i + 1)$;

Received July 18, 1969.

Michigan Math. J. 17 (1970).