REMARK ON A RESULT OF KAPLANSKY CONCERNING C(X)

S. Cater

In this paper, let R be a chain (with more than one element) endowed with the interval topology, let X be a compact Hausdorff space, and let R(X) denote the family of continuous functions in R^X . For f, $g \in R(X)$, let $f \leq g$ mean that $f(x) \leq g(x)$ for all $x \in X$, and let $f \leq g$ mean that $f(x) \leq g(x)$ for all $f \in R(X)$, let $f \in R(X)$, let $f \in R(X)$, let $f \in R(X)$ denote the graph of f in $f \in R(X)$ under the partial ordering $f \in R(X)$ is a lattice.

In [4] Kaplansky described all the lattice automorphisms of R(X) that are bicontinuous in the topology of uniform convergence (here R is the real line); if ϕ is such an automorphism, there exist a homeomorphism T of X onto X and a continuous mapping p of X × R into R such that $\phi(f)(Tx) = p(x, f(x))$ for all $x \in X$ and all $f \in R(X)$, and for each $x \in X$ the mapping $r \to p(x, r)$ is increasing. (Milgram [5] presents a similar result for the case where R(X) is regarded as a multiplicative semigroup.) He observed that if X satisfies the first countability axiom, then each automorphism ϕ of R(X) must be bicontinuous, and hence of this form. Finally, he presented a compact space X and an automorphism ϕ of R(X) that cannot be so described [4, p. 629].

We shall present analogues of these results in a much broader context in which Kaplansky's arguments do not apply (see Examples 1 and 2). The prime ideals employed in [3] and [4] will not enter our development of Theorems I, II, and III.

Definition 1. A sublattice L of R(X) is an R-sublattice if (1) for each $x \in X$, Lx = $\{f(x): f \in L\}$ consists of more than one element, and (2) given f_1 , $f_2 \in L$, x_1 , $x_2 \in X$, $x_1 \neq x_2$, there exists an $h \in L$ such that $h(x_i) = f_i(x_i)$ for i = 1, 2.

Note that a characterizing sublattice of R(X) in the sense of Anderson and Blair [1] is an R-sublattice. For if

$$h_1(x_1) < f_1(x_1), \quad h_1(x_2) > f_2(x_2), \quad h_2(x_1) > f_1(x_1), \quad h_2(x_2) < f_2(x_2),$$

then $(h_1 \vee f_1) \wedge (h_2 \vee f_2)$ coincides with f_1 at x_1 and with f_2 at x_2 . On the other hand, an R-sublattice L is characterizing if and only if for each $x \in X$, Lx has no maximal or minimal element. (See Examples 1 and 2, and also compare R-sublattices with the c-characterizing lattices of Blair [2].)

Throughout this paper, L_1 and L_2 will be R-sublattices of R(X), and ϕ will be a lattice isomorphism of L_1 onto L_2 .

Definition 2. The isomorphism ϕ of L_1 onto L_2 is increasing if for f, $g \in L_1$, f < g if and only if $\phi(f) < \phi(g)$.

THEOREM I. A necessary and sufficient condition that the isomorphism ϕ of L_1 onto L_2 be increasing is that there exist a homeomorphism T of X onto X and a mapping p of $\bigcup_{f \in L_1} G_f$ into R, continuous on each G_f , such that for each $x \in X$, $r \to p(x, r)$ is an increasing mapping of $L_1 x$ onto $L_2(Tx)$, and such that

Received April 15, 1964.