THEOREMS ON BREWER AND JACOBSTHAL SUMS. II

Albert Leon Whiteman

1. INTRODUCTION

Let $V_n(x)$ be the polynomial determined by the recurrence relation

$$V_{n+2}(x) = x V_{n+1}(x) - V_n(x)$$
 (n = 1, 2, ...)

with $V_1(x) = x$, $V_2(x) = x^2 - 2$. In a recent paper [1], B. W. Brewer has defined the

$$\Lambda_{n} = \sum_{s=0}^{p-1} \chi(V_{n}(s)),$$

where $\chi(s)$ denotes the Legendre symbol (s/p) and p is an odd prime. It is easily verified that $\Lambda_1 = 0$, $\Lambda_2 = -1$. Brewer evaluated Λ_3 , Λ_4 , and Λ_5 . For a summary of the results pertaining to Λ_3 and Λ_4 , see Part I of the present paper [9]. The results for the sum $\Lambda_5 = \Sigma_{s=0}^{p-1} \chi(s(s^4 - 5s^2 + 5))$ are as follows.

If $p \equiv 3 \pmod{4}$ or if $p \equiv \pm 2 \pmod{5}$, then $\Lambda_5 = 0$.

If $p = 20f + 1 = u^2 + 5v^2 = x^2 + 4y^2$ with $x \equiv 1 \pmod 4$, then $\Lambda_5 = 0$ if $5 \mid x$, and $\Lambda_5 = -4u$ if $5 \not\mid x$ and $u \equiv x \pmod 5$.

If $p=20f+9=u^2+5v^2=x^2+4y^2$ with $x\equiv 1\ (mod\ 4)$, then $\Lambda_5=0$ if $5\mid x$, and $\Lambda_5=4u$ if $5\not\mid x$ and $u\equiv x\ (mod\ 5)$.

Moreover, the following congruences modulo p hold:

$$(1.1) \qquad {10f \choose f} {10f \choose 3f} \equiv 4u^2, \qquad {10f \choose f} \equiv \pm {10f \choose 3f} \qquad (p = 20f + 1),$$

$$(1.2) \quad {10f+4 \choose f} \, {10f+4 \choose 3f+1} \ \equiv \ 4u^2 \, , \qquad {10f+4 \choose f} \ \equiv \ \pm {10f+4 \choose 3f+1} \qquad (p=20f+9) \, .$$

Brewer bases his method for evaluating Λ_5 upon the congruences in (1.1) and (1.2). The purpose of the present paper is to derive the results for Λ_5 without employing these congruences. In Part I, which has been published elsewhere [9], the following theorems are established. Theorem 1 gives the value of Λ_5 when $p \equiv \pm 2 \pmod{5}$. Theorem 2 gives the value of Λ_5 when p = 20f + 1. Theorem 3 is a statement of the two congruences in (1.1) together with a resolution of the ambiguous sign in the second congruence. Let p = 20f + 1 and put $p = x^2 + 4y^2$. Theorem 3 asserts that then the ambiguous sign is plus if $5 \nmid x$ and is minus if $5 \mid x$.

The theory of cyclotomy modulo a prime p = ef + 1 leads, for e = 20, to the case p = 20f + 1. The method of [9] is based on this theory and was suggested by Cauchy's

Received August 17, 1964.

This paper was supported in part by National Science Foundation grant G 24066.