NOTE ON AN INVARIANT OF KERVAIRE

Edgar H. Brown, Jr.

In [2] Kervaire defined the so-called Arf invariant $\Phi(M)\in Z_2$ for an (n-1)- connected, compact, closed, C^∞ manifold M of dimension 2n, where n is odd and $n\neq 1,\ 3,\ 7$ (see also [3]). In fact, he showed that Φ induces a homomorphism from the $2n^{th}$ framed cobordism group into Z_2 , and that $\Phi=0$ if n=5. It is an unsolved problem whether $\Phi=0$ for all n.

Let $\Omega_m({\rm Spin})$ denote the m^{th} spin or cobordism group [4]. The aim of this note is to generalize Φ in the following sense. We define a homomorphism

$$\Psi: \Omega_{2n}(Spin) \rightarrow \mathbb{Z}_2$$

for $n \equiv 1 \pmod 4$ such that $\Psi(M) = \Phi(M)$ if M is as above. The writer has not been able to show that $\Psi \neq 0$. It is known that the image of framed cobordism in Spin cobordism is not zero. (Milnor has shown that there exists a homotopy 10-sphere that is not a Spin boundary.)

In the following, $n \equiv 1 \pmod 4$, n > 1, and all cohomology groups have \mathbb{Z}_2 coefficients. Recall that

$$Sq^{n+1} = Sq^2 Sq^{n-1} + Sq^1 Sq^2 Sq^{n-2}$$
.

Hence, on n-dimensional cohomology classes,

$$Sq^{2} Sq^{n-1} + Sq^{1} (Sq^{2} Sq^{n-2})$$

is a relation. In [1] it is shown that such a relation gives rise to a secondary cohomology operation

$$\psi$$
: Hⁿ(X) \cap Ker Sqⁿ⁻¹ \cap Ker Sq² Sqⁿ⁻² \rightarrow H²ⁿ(X)/Sq² H²ⁿ⁻²(X) + Sq¹ H²ⁿ⁻¹(X).

Furthermore, if $\psi(u)$ and $\psi(v)$ are defined, then $\psi(u+v)$ is defined and

$$\psi(\mathbf{u} + \mathbf{v}) = \psi(\mathbf{u}) + \psi(\mathbf{v}) + \mathbf{u} \cup \mathbf{v}$$

modulo the indeterminacy of the operation.

Suppose M is a closed, compact, simply connected 2n-manifold such that the Stiefel-Whitney class $W_2(M)$ is zero. If $u \in H^n(M)$, then

$$Sq^{n-1}u \in H^{2n-1}(M) = 0$$
, $Sq^2 Sq^{n-2}u = W_2 Sq^{n-2}u = 0$,
 $Sq^2 H^{2n-2}(M) = W_2 H^{2n-2}(M) = 0$, and $Sq^1 H^{2n-1}(M) = 0$.

Hence ψ defines a quadradic function

$$\psi$$
: $H^{n}(M) \rightarrow H^{2n}(M)$.

Received July 2, 1964.