ISOMETRIC IMMERSIONS OF CONSTANT CURVATURE MANIFOLDS

Barrett O'Neill and Edsel Stiel

INTRODUCTION

Let M^d and \overline{M}^{d+k} be complete, differentiable (C^{∞}) Riemannian manifolds of constant sectional curvature C and \overline{C} respectively. It is known that for $C < \overline{C}$ and k < d-1, there exist no isometric immersions of M^d in \overline{M}^{d+k} . On the other hand, if $C \ge \overline{C}$ there are many such immersions, even for k=1. We shall investigate the character of these immersions in the critical case $C=\overline{C}$, using a refinement of the method applied to the flat case in [2]. The general idea is that if M^d is not totally geodesic in \overline{M}^{d+k} , it must be bent along rather special submanifolds. We prove a precise formulation of this in the next section, and draw some consequences from it in Section 3.

THE MAIN THEOREM

Let M^d and \overline{M}^{d+k} be manifolds with the same constant curvature C, M^d being assumed complete. We assume further that $\psi \colon M^d \to \overline{M}^{d+k}$ is an isometric immersion, with k < d. Our notation will be essentially that in [2]. In particular, we express the second fundamental form information of ψ in terms of a tensor T related to the classical operators S_z by the identity $\langle T_x(y), z \rangle = \langle S_z(x), y \rangle$, where $x, y \in M_m$ and $z \in (M_m)^{\perp}$. (Here $(M_m)^{\perp}$ denotes the orthogonal complement of $d\psi(M_m)$ in $\overline{M}_{\psi(m)}$.)

If $m \in M$, let $\mathscr{N}(m)$ be the space of null-vectors at m, that is, the subspace of M_m consisting of all vectors x such that $T_x = 0$. There is a useful result (Theorem 2 of [1]) which, though stated for the flat case, applies also in the case at hand. It asserts that for each point $m \in M$, there exists a vector $y \in \mathscr{N}(m)^{\perp}$ such that T_y is one-one on $\mathscr{N}(m)^{\perp}$. (Here the orthogonal complement is only in M_m .)

Let n be the minimum value of the dimension of $\mathcal{N}(m)$ on M, and let G be the (open) set of M on which this minimum occurs. Then \mathcal{N} is a differentiable field of n-planes on G. Using this notation, we can state our main result.

THEOREM 1. The field ${\mathcal N}$ is integrable on G; its leaves are complete, totally geodesic, n-dimensional submanifolds of M^d , with $n \geq d-k$. Furthermore, each leaf is totally geodesic in \overline{M}^{d+k} relative to ψ .

Proof. The last assertion follows immediately from the definition of \mathscr{N} . The lower bound for n is a consequence of the theorem of Chern and Kuiper stated above. The proof that \mathscr{N} is integrable on G and that its leaves are totally geodesic is the same as in the flat case. This is true because the proof involves only the relative position of $\psi(M)$ in \overline{M} , that is, involves only the second fundamental form and Codazzi equation of ψ . However, the essential feature of the theorem is the *completeness* of the leaves. This depends not merely on relative information, but also

Received January 11, 1963.

This research was supported in part by a National Science Foundation grant.