A RESULT IN THE GEOMETRY OF NUMBERS

L. C. Eggan and E. A. Maier

1. Let N denote the set of rational integers, and R the set of real numbers.
Consider the function m defined on the non-negative real numbers by

m(c) = max{min{|a -u| | -u|;ueN};a,B€R, |a-8|=2c}.

THEOREM 1. The function m defined above has the following values:
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The problem of evaluating the function m was suggested to us by Professor Ivan
Niven. In the ninth series of Earl Raymond Hedrick Lectures [Michigan State Uni-
versity, August 29 and 30, 1960, as yet unpublished], Professor Niven proved the fol-

lowing two lemmas:
LEMMA A. If B and o are veal numbers lying between the same pair of con-
seculive integers, then theve exists an integer u such that

|8 -ufla-uf<1/4 and |B-u|<1.

LEMMA B. If B and a are veal numbers with at least one integer between them,
then theve exists an integer v such that

Iﬁ—ulla-ulslﬁ—;a—l and |B-u|<1.

Using these two lemmas, Professor Niven constructed a very simple proof of a
classical theorem of Minkowski [see 1; p. 48, Theorem IIA]. Whereas this is the
major importance of these two lemmas, they also yield the result that
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