ON THE MAXIMAL DOMAIN OF A "MONOTONE" FUNCTION

George J. Minty

1. INTRODUCTION

Let \mathfrak{X} be a Hilbert-space. In $\mathfrak{X} \times \mathfrak{X}$, we define the M-relation by

$$(x_1, y_1) M(x_2, y_2)$$
 provided $\Re (x_1 - x_2, y_1 - y_2) \ge 0$.

(The symbol \Re may be dropped if the scalars are real.) This relation has been studied in previous papers (for example [2], [3]). In harmony with these papers, we shall say that a set $E \subset \mathcal{X} \times \mathcal{X}$ is *totally-M-related* provided $(x_1, y_1), (x_2, y_2) \in E$ implies (x_1, y_1) $M(x_2, y_2)$. We shall say that a map F from a subset of \mathcal{X} into \mathcal{X} is *monotone* provided its graph in $\mathcal{X} \times \mathcal{X}$ is totally-M-related.

A real linear subspace is a subset $\mathfrak{X}_0 \subset \mathfrak{X}$ such that β_1 , β_2 real and x_1 , $x_2 \in \mathfrak{X}_0$ imply $\beta_1 x_1 + \beta_2 x_2 \in \mathfrak{X}_0$. A real affine variety is a translate of a real linear subspace. We call a set $Q \subset \mathfrak{X}$ almost-convex provided it contains the interior of its convex hull K(Q), where the "interior" is taken relative to the smallest real affine variety containing Q (or equivalently, K(Q)).

2. THE THEOREM

THEOREM. Let \mathfrak{X} be a finite-dimensional Hilbert-space, with real or complex scalars, and let $E \subset \mathfrak{X} \times \mathfrak{X}$ be a maximal totally-M-related set. Let P be the projection P(x, y) = x. Then P(E) is an almost-convex set.

Proof. Our object is to show that int $K[P(E)] \subset P(E)$. For the moment, we restrict attention to the case where the scalars of $\mathfrak X$ are real. Let $x_0 \in \operatorname{int} K[P(E)]$. Without loss of generality, we shall assume that x_0 is the zero-vector θ ; for if this does not hold, the translation $x \to x - x_0$ (leaving the y's fixed) will carry E into a new maximal totally-M-related set E', and x_0 into θ , and so forth. Thus the "affine variety" of the theorem becomes "linear subspace."

Furthermore, we lose no generality by assuming that the "interior" is taken relative to the space \mathfrak{X} . Suppose that \mathfrak{X}_0 , the subspace spanned by K[P(E)], is of dimension less than that of \mathfrak{X} , and let \mathfrak{X}_0^+ be the orthogonal complement of \mathfrak{X}_0 . Then each vector y can be resolved as $y = y^0 + y^1$, where $y^0 \in \mathfrak{X}_0$ and $y^1 \in \mathfrak{X}_0^+$, and it is easily seen that $(x, y) \in E$ if and only if $(x, y^0) \in E$, and that the image E_0 of E under the map $(x, y) \to (x, y^0)$ is a maximal totally-M-related set in $\mathfrak{X}_0 \times \mathfrak{X}_0$ such that $P(E_0) = P(E)$.

With these assumptions, we proceed. Let S be a sphere with center θ such that $S \subset K[P(E)]$. It is easy to find a finite set F of vectors of S which generate $\mathfrak X$ (considered as a convex cone). Each vector of F, in turn, is a finite linear combination, with positive coefficients, of vectors of P(E), so that we can find a finite set x_1, \dots, x_m of vectors of P(E) which generate $\mathfrak X$.

Consider now the polyhedral convex set

Received June 21, 1961.