ON A THEOREM OF FISHER CONCERNING THE HOMEOMORPHISM GROUP OF A MANIFOLD

Morton Brown

An n-manifold M^n is a connected, separable metric space each point of which has an open neighborhood whose closure is homeomorphic to the n-cell I^n . An internal cell of M^n is a subset Q of M^n for which there exists a homeomorphism of Euclidean space E^n into M^n such that Q is the image of the unit n-cell of E^n . Alternatively, Q is a topological n-cell in the interior \mathring{M}^n of M^n whose boundary \mathring{Q} is locally flat in M^n [1]. A homeomorphism h of M^n is supported on a set $K \subset M^n$ if h(x) = x whenever $x \notin K$. Suppose that $H(M^n)$ denotes the group of all homeomorphisms of M^n onto M^n and $FH(M^n)$ denotes the subgroup generated by homeomorphisms supported on internal cells. Then according to Fisher [2] $FH(M^n)$ is simple and is the intersection of all nontrivial normal subgroups of $H(M^n)$.

Suppose $\epsilon>0$ and $FH_\epsilon(M^n)$ denotes the subgroup of $FH(M^n)$ generated by homeomorphisms supported on internal cells of diameter less than ϵ . The purpose of this note is to prove that

$$FH(M^n) = \bigcap_{\varepsilon > 0} FH_{\varepsilon}(M^n),$$

that is, a homeomorphism h is in $FH(M^n)$ if and only if for each $\epsilon > 0$, h is the composition of homeomorphisms supported on subsets of the interior of M^n of diameter less than ϵ . A similar theorem holds for the piecewise linear case.

The following lemma has a straightforward proof.

LEMMA 1. Let $I^n = I^{n-1} \times I^1$ and suppose X is a compact subset of I^n such that $X \cap \dot{I}^n \subset I^{n-1} \times 0$. Then there is a piecewise linear homeomorphism h of I^n such that $h \mid \dot{I}^n = 1$ and $h(X) \subset I^{n-1} \times [0, 1/2)$.

LEMMA 2. Let h be a homeomorphism of $I^n = I^{n-1} \times I^1$ onto itself such that $h \mid I^n = 1$ and $h(I^{n-1} \times 1/2) \subset I^{n-1} \times [1/3, 2/3]$. Then there exists a homeomorphism h^1 of I^n such that

$$h' \mid (\dot{I}^n \cup I^{n-1} \times [0, 1/4] \cup I^{n-1} \times [3/4, 1]) = 1$$
 and $h' \mid I^{n-1} \times 1/2 = h \mid I^{n-1} \times 1/2$.

Proof. Let g be a piecewise linear homeomorphism of $I^{n-1} \times [1/4, 3/4]$ onto $I^{n-1} \times [0, 1]$ that is the identity on $I^{n-1} \times [1/2, 2/3]$. Let h': $I^n \to I^n$ be defined by

$$h'(x) = \begin{cases} x, & x \in I^{n-1} \times ([0, 1/4] \cup [3/4, 1]) \\ g^{-1}hg(x), & x \in I^{n-1} \times [1/4, 3/4] \end{cases}$$

Remark. If h is piecewise linear, so is h'.

LEMMA 3. Let $h\colon I^n\to I^n$ be a homeomorphism such that $h\mid \dot{I}^n=1$. Then h is the composition of five homeomorphisms, each the identity on \dot{I}^n , and each supported on one of the cells

Received August 15, 1962.