A NOTE ON THE GENERALIZED CONTINUUM HYPOTHESIS. III.

BOLESŁAW SOBOCIŃSKI

§5*

- In [11], p. 72, point ($\ddot{v}ii$), and p. 76, point ($\ddot{x}i$), it is proved that the formulas C1, B2 and B3 which are the particular instances of formulas C and B, cf. [7], p. 274, are such that C1 is a consequence of E_1 , B2 follows from $\mathfrak C$ and B3 is provable in the general set theory. Now we shall show:
 - 1) that the following particular instances of D
- D2 For any cardinal number $\mathfrak m$ and any aleph $\mathfrak a$, if $2^{\mathfrak m}=2^{\mathfrak a}$, then $\mathfrak m=\mathfrak a$. and
- D3 For any cardinal number \mathfrak{m} and any aleph \mathfrak{a} , if $2^{\mathfrak{m}}=2^{2^{\mathfrak{a}}}$, then $\mathfrak{m}=2^{\mathfrak{a}}$. are consequences of Cantor's hypothesis on alephs.
 - 2) that the following particular instance of C
- C2 For any cardinal number \mathfrak{m} and any aleph \mathfrak{a} , if $\mathfrak{a} \leq \mathfrak{m}$, then $2^{\mathfrak{a}} \leq 2^{\mathfrak{m}}$. is a consequence of D2;
- 3) that the formulas D1 and C1, which are, obviously, the instances of D2 and C2 respectively, are equivalent in the field of general set theory; and
 - 4) that the following formula
- E_3 For any cardinal number $\mathfrak m$ and any aleph $\mathfrak a$, if $\mathfrak m \le 2^{2^{\mathfrak a}}$, then $\mathfrak m \le 2^{\mathfrak a}$ and which is such that E_2 is its substitution follows from $\mathfrak C$. We prove it as follows:
 - (xii) Cantor's hypothesis on alephs implies formulas D2, D3 and E_3 .
 - (\mathfrak{m}) *Proof of D2.* Let us assume the conditions of *D2*, viz. that

^{*}The first and the second parts of this paper appeared in *Notre Dame Journal of Format Logic*, v. III (1962), pp. 274-278, and v. IV (1963), pp. 67-79. They will be referred to throughout this third part as [7] and [11] respectively. See the additional Bibliography given at the end of this part. An acquaintance with [7] and [11] is presupposed.