Notre Dame Journal of Formal Logic Volume IV, Number 2, April 1963

COMPLETENESS OF COPI'S METHOD OF DEDUCTION

JOHN THOMAS CANTY

Massey has pointed out in [2] that it is an open question as to whether Copi's method of deduction for propositional logic (CMD), as described in Chapter Three of [1], is complete in the sense of being able to validate every argument which can be proved valid by the use of truth-tables. It is here shown that CMD is complete in this sense, for its completeness follows from Theorem I below and the deductive completeness of the logistic system R.S. of Chapter Seven of [1].

The following lemma is required for the proof of Theorem I:

There is a formal proof by **CMD** of the validity of $q \vee (p \cdot \sim p) \cdot r : q$. Proof of the lemma: ¹

1. $q \vee (p \cdot \sim p) \cdot r$	/ :: q
2. $(q \lor (p \cdot \sim p)) \cdot (q \lor r)$	1, Dist.
3. $q \vee (p \cdot \sim p)$	2, Simp.
4. $(q \vee p) \cdot (q \vee \sim p)$	3, Dist.
5. q v p	4, Simp.
6. $\sim \sim q \vee p$	5, D.N.
7. $\sim q \supset p$	6, Impl.
8. $(q \lor \sim p) \cdot (q \lor p)$	4, Comm.
9. $q \lor \sim p$	8, Simp.
10. $\sim \sim q \vee \sim p$	9, D.N.

^{*}This paper was written while the author was a fellow under the National Defense Education Act.

^{1.} The elementary valid argument forms of CMD used in constructing this formal proof are referred to by their abbreviations given by Copi on pages 42-43 of [1]. Note that because of Comm. for both disjunction and conjunction, formal proofs of the validity of $((p \cdot \sim p) \cdot r) \vee q \cdots q, (r \cdot (p \cdot \sim p)) \vee q \cdots q$, and $q \vee (r \cdot (p \cdot \sim p)) \cdots q$ can also be given. Thus any reference to the formal proof given for this lemma should be taken as referring to any one of these four formal proofs.