SOME METHODS OF FORMAL PROOFS. III

JULIUSZ REICHBACH

In [1] I gave a characterization of the first order functional calculus by means of a truncated definition of satisfiability; in [2] I gave a proof of completeness of the functional calculus of an arbitrary order (without the extensionality axiom and the definition axiom) in the non-standard sense. So there appears a question about an analogical characterization-by means of the truncated satisfiability definition-of the last calculus. This paper gives an answer to the question, that is, it gives a characterization of theses of the calculus of an arbitrary order by means of a truncated satisfiability definition.

We use the notation of [1] with the following:

```
    \(Q(k)\) - a set of tables of rank \(k\),
\(\left\{i_{w(F)}\right\}\) - indices of free variables occurring in \(F\),
    \(w(F)\) - the number of free variables occurring in \(F\),
    \(p(F)\) - the number of apparent variables occurring in \(F\),
    \(n(F)=\max \left\{w(F)+p(F),\left\{i_{w(F)}\right\}\right\}\).
```

A non-standard model is defined by means of a sequence $M=<B_{1},\left\{F_{q}^{t}\right\}$, $B_{2},\left\{G_{q}^{t}\right\}, B_{3},\left\{H_{q}^{t}\right\}, \ldots>$ where B_{1} is a non-empty domain of arbitrary elements, B_{2} is an arbitrary non-empty domain of relations on B_{1}, B_{3} is a non-empty domain of relations of a given type and order which contains previously used relations of the type; and for each type there exists a domain B_{i} such that B_{i} is a non-empty domain of relations of the given type including previously used relations of the type; and $\left\{F_{q}^{t}\right\}$ is a sequence of relations from the domain $B_{2},\left\{G_{q}^{t}\right\}$ is a sequence of relations from the domain B_{3}, and analogously for each sequence of relations of a given type. A model with finite domains is called a table; if domains of the table have k elements then it is called a table of rank k.
f-a function on domains of a table T with values in domains of a model M .
A_{k} - a sample of k individuals and k relations of each type.
V_{k} - the set of all elements of each domain of a table in natural order.
$P\left(B, V_{k}\right)$ means: B is a permutation of V_{k}.

