Notre Dame Journal of Formal Logic Volume XII, Number 3, July 1971 NDJFAM

COMBINATORIAL OPERATORS AND THEIR QUASI - INVERSES

VLADETA VUČKOVIĆ

1. Introduction. Combinatorial operators were introduced by J. Myhill ([1], [2]) as a fundamental tool in the study of isols. A systematic exposition of those operators is given in the monograph [3] of J. Dekker, to which we refer for the notations. In [3], Dekker proved the following

Theorem 1.1. Let ϕ be a combinatorial operator and ϕ^{-1} its quasi-inverse. If ϕ is recursive, then $\phi(\varepsilon)$ is a recursively enumerable set, and there is a partial recursive function χ , whose domain is $\phi(\varepsilon)$, such that

(1.1.)
$$\phi^{-1}(x) = \rho_{\chi(x)} \text{ for all } x \in \phi(\varepsilon).$$

In this paper we investigate the measure in which the existence of a p.r. (partial recursive) function χ , such that $\phi^{-1}(x) = \rho_{\chi(x)}$ for all $x \epsilon \phi(\epsilon)$, determines the recursive character of the operator ϕ .

Besides the notations from [3], we shall use the following ones: $\langle \omega_i \rangle$, $i = 0, 1, \ldots$, is the Post-enumeration of all r.e. (recursively enumerable) sets; F_R denotes the set of all r. (recursive) functions of one variable, and \widetilde{F}_R denotes the set of all p.r. functions of one variable.

2. The Fundamental Theorem. Let ϕ be a combinatorial operator and ϕ_0 its dispersive operator. We shall say that ϕ (resp. ϕ_0) is *sub-effective* iff (if and only if) there is a disjoint r.e. sequence $\langle \omega_{\phi_0(i)} \rangle_{i \in \mathbb{E}}$, $\phi_0 \in F_R$, of r.e. sets such that

$$(2.1.) \qquad \qquad \phi_0(\rho_n) \subset \omega_{\phi_0(n)} \text{ for all } n \in \mathfrak{E}.$$

All theorems of this paper are, essentially, strengthenings of the following fundamental

Theorem 2.1. A combinatorial operator ϕ is sub-effective iff there is a $\chi \, \varepsilon \, \widetilde{F}_R$ such that

(2.2.)
$$\phi^{-1}(x) = \rho_{\chi(x)} \text{ for all } x \in \phi(\varepsilon).$$

Proof. Let ϕ be sub-effective and φ_0 as in (2.1). Then, $E = \bigcup_{i=0}^{\infty} \omega_{\varphi_0(i)}$ is a r.e. set and $\phi(\varepsilon) = \bigcup_{n=0}^{\infty} \phi_0(\rho_n) \subset E$ (where ϕ_0 is the dispersive operator of ϕ).

Received February 11, 1970