ON PROVABLE RECURSIVE FUNCTIONS

H. B. ENDERTON

A provable recursive function is, roughly, a recursive function which is not only a total function (on the natural numbers), but can even be proven to be total in some formal system, e.g. first-order Peano arithmetic. In this note we discuss the problem of making this definition precise. See the references for discussion of the properties of this class of functions.

In [2] Fischer proposes that a recursive function f be called provable in the formal system S if there is an index e of f such that

$$
\vdash_{s} \forall x \exists y \exists z M(e, x, y, z)
$$

where \mathbf{M} is a formula which binumerates (i.e. numeralwise expresses) in S the primitive recursive relation holding of a, b, c, d iff the a^{\prime} th partial recursive function applied to input b gives output c in not more than d steps. The problem here is: Which such M? If the notion does not depend on the choice of M, the problem vanishes. But that is far from true. For simplicity assume that the formal system in question is in fact first-order Peano arithmetic P.

Theorem: (a) We can choose M as above such that no function is provable.
(b) For any total recursive f we can choose M as above such that f is provable.
Proof: (a) Let $M_{0}(w, x, y, z)$ be your first choice for M. Let $A(x)$ be a formula such that

$$
\vdash_{P} \mathbf{A}(n) \text { for each } n \text {, but } \nvdash P_{P} \forall \mathrm{x} \mathbf{A}(\mathbf{x})
$$

Let $M(w, x, y, z)$ be

$$
M_{0}(w, x, y, z) \wedge A(x)
$$

This binumerates the same relation, but for any e

$$
\Varangle_{\mathrm{P}} \forall \mathrm{x} \exists \mathrm{y} \exists \mathrm{zM}(e, \mathrm{x}, \mathrm{y}, \mathrm{z})
$$

