Notre Dame Journal of Formal Logic Volume IX, Number 1, January 1968

NORMAL FORM GENERATION OF S5 FUNCTIONS VIA TRUTH FUNCTIONS

GERALD J. MASSEY

1. Generating the Singulary S5 Functions. The fact that the number of n-ary S5 functions (connectives, if you prefer) is equal to the number of m-ary truth functions, where $m = 2^n + n - 1$ (Carnap [2] p. 48), has led Canty and Scharle in [1] to pose the fascinating problem now to be described. Consider the schema

T(p, F(p)).

Does there exist an S5 function F such that, as T runs through the binary truth functions, the expression T(p, F(p)) generates all the singulary S5 functions? Let us call such a function F a solution to the singularyfunction-generation problem. In [1], Canty and Scharle correctly state that the modal function \otimes_1 is a solution to the singulary-function-generation problem (we use the names introduced in Massey [4] for the S5 functions), where the semantics of \otimes_1 is given by the following complete set of truth tables (Cf. Massey [4] on using complete sets of truth tables to define the semantics of an S5 connective):

$$\frac{p}{t} \xrightarrow{\otimes_1 p} \frac{p}{f} \xrightarrow{\otimes_1 p} \frac{p}{f} \xrightarrow{\otimes_1 p} \frac{p}{t} \xrightarrow{\otimes_1 p} t \xrightarrow{f} t$$

It will be helpful in the sequel to stack these tables on top of one another thus:

Þ	$\otimes_1 p$
t	t
f	f
t	f
f	t

Clearly a singulary S5 function F is a solution to the singulary-functiongeneration problem if and only if, for each pair (α, β) of truth values, there

Received March 14, 1967