Notre Dame Journal of Formal Logic Volume XV, Number 4, October 1974 NDJFAM

A THEOREM CONCERNING A RESTRICTED RULE OF SUBSTITUTION IN THE FIELD OF PROPOSITIONAL CALCULI. II

BOLESŁAW SOBOCIŃSKI

6* It follows from definition Df.3, Remark IV and **5.4** that in \mathfrak{D}_0 for every $m, 1 \le m \le y$, and for every $k, 2 \le k \le z, \{\mathbf{s}_1^m\}|_{\overline{R1}}\mathbf{s}_k^m$, i.e., that \mathbf{s}_k^m is a consequence by Rl of the first term of \mathbf{S}_m . We indicate by $\mathfrak{D}_1 = \{\mathbf{A}; \mathbf{V}_{1\mathbf{E}}^*; \mathbf{V}_{2\mathbf{E}}^*; \mathbf{S}_1^+; \mathbf{S}_2; \ldots; \mathbf{S}_y\}$ an augmentation of \mathfrak{D}_0 such that \mathfrak{D}_1 is a proof sequence of **b** in which $\mathbf{S}_1^+ = \mathbf{S}_1$, but in which for every $k, 1 \le k \le z$, there are two terms σ and τ such that they precede \mathbf{s}_1^1 , i.e., the first term of \mathbf{S}_1^+ , and $\{\sigma, \tau\}|_{\overline{R2}}\mathbf{s}_k^1$. In the other words, in \mathfrak{D}_1 every term of \mathbf{S}_1 is a consequence by R2 of two terms belonging to \mathfrak{D}_1 and preceding the first term of \mathbf{S}_1 . Obviously, if $\mathbf{S}_1 = \{\mathbf{s}_1^1\}$, then $\mathfrak{D}_1 = \mathfrak{D}_0$. But, in such a case \mathfrak{D}_0 can be considered as a particular instance of \mathfrak{D}_1 which will not be analyzed separately. In a similar way we indicate by $\mathfrak{D}_2 = \{\mathbf{A}; \mathbf{V}_{1\mathbf{E}}^*; \mathbf{V}_{2\mathbf{E}}^*; \mathbf{S}_1^{+*}; \mathbf{S}_2^+; \ldots; \mathbf{S}_y\}$ an analogous augmentation of \mathfrak{D}_1 and so forth.

In this section we will prove that we can replace \mathfrak{D}_0 by its augmentation

$$\mathfrak{D}_{v} = \{ \mathsf{A}; \, \mathsf{V}_{1\mathsf{E}}^{*}; \, \mathsf{V}_{2\mathsf{E}}^{*}; \, \mathsf{S}_{1}^{+*}; \, \ldots \, ; \, \mathsf{S}_{v-1}^{+*}; \, \mathsf{S}_{v}^{+} \}$$

such that \mathfrak{D}_{y} is a proof sequence of **b** in which for every $m, 1 \leq m \leq y - 1$, $A|_{\mathbb{R}^{1^{*},\mathbb{R}^{2}}}S_{m}^{+*}$ and, moreover, $A|_{\mathbb{R}^{1^{*},\mathbb{R}^{2}}}S_{y}^{+}$.

Since in order to prove this statement we shall use deductions entirely analogous to those that were presented in section 4, the proof given below will be rather concise.

6.1 Let us assume that in $\mathfrak{D}_0 \mathbf{S}_1 \neq {\mathbf{s}_1^1}$ and, moreover, that $\mathbf{s}_k^1, 2 \leq k \leq z$, is an arbitrary term of \mathbf{S}_1 such that $\mathbf{s}_1^1 \neq \mathbf{s}_k^1$. Then, *cf.*, **5.3** and Remark IV, in \mathfrak{D}_0 there are two terms σ and τ such that they precede $\mathbf{s}_1^1, {\sigma, \tau}_{R2} \mathbf{s}_1^1$ and ${\mathbf{s}_1^1}_{|_{R1}} \mathbf{s}_k^1$. Since, obviously, \mathbf{s}_k^1 is a substitution instance of \mathbf{s}_1^1 , there is a

^{*}The first part of this paper appeared in *Notre Dame Journal of Formal Logic*, vol. XV (1974), pp. 465-477. An acquaintance with that part and the reference given therein is presupposed.