Notre Dame Journal of Formal Logic
Volume XV, Number 3, July 1974
NDJFAM

LOGIC WITHOUT TAUTOLOGIES

LEO SIMONS

In the first edition of Introduction to Logic (p. 259), Copi gave a system of natural deduction for sentential calculus, and he included in the second edition of Symbolic Logic (pp. 53 ff .) my proof that the system is incomplete. In this paper, I want to show, first, that the matrix used to prove the incompleteness of the system in fact furnishes a decision procedure for it; second, that any "formal" extension of the system is complete; third, that the system contains no "tautologies'" or 'theorems', though it contains "contradictions"; fourth, that though the system does not permit the deduction of all conclusions from premisses which tautologically imply them, still it does permit the deduction of some tautological equivalent of any non-tautological conclusion tautologically implied by the premisses. Another result may also be of interest. The usual replacement rule does not hold for the system, although a certain 'weak', replacement rule does hold. Finally, the system actually worked with, proved equivalent to Copi's, is perhaps interesting in its own right.

1 The equivalence of Copi's system and C. The rules of Copi's system are here transcribed in the metalinguistic notation that will be used throughout this paper. Thus, instead of ' p ', and ' q ', and the like, Roman capitals, with or without subscripts and other affixes, are used as metalinguistic variables. (In one later context, however, " A '" and " B ', are used as proper names of atomic sentences.) In the presentation of Copi's system, '㤝" will mean 'yield(s) by Copi's rules', and " \overleftrightarrow{C} "' will mean 'may, according to Copi's rules, replace or be replaced by' .

The first nine of Copi's rules are:

1. Modus Ponens: $S_{1} \supset S_{2}, S_{1} \vdash_{\mathrm{C}} S_{2}$
2. Modus Tollens: $S_{1} \supset S_{2}, \sim S_{2} \overleftarrow{C}_{\sim}^{\sim} S_{1}$
3. Hypothetical Syllogism: $S_{1} \supset S_{2}, S_{2} \supset S_{3} \vdash_{\mathrm{C}} S_{1} \supset S_{3}$
4. Disjunctive Syllogism: $S_{1} \vee S_{2}, \sim S_{1} \vdash_{\bar{C}} S_{2}$
5. Constructive Dilemma: $\left(S_{1} \supset S_{2}\right) \cdot\left(S_{3} \supset S_{4}\right), S_{1} \vee S_{3} \vdash_{\mathrm{C}} S_{2} \vee S_{4}$
6. Destructive Dilemma: $\left(S_{1} \supset S_{2}\right) \cdot\left(S_{3} \supset S_{4}\right), \sim S_{2} \vee \sim S_{4} \vdash_{\mathrm{C}} \sim S_{1} \vee \sim S_{3}$
7. Simplification: $S_{1} \cdot S_{2} \vdash_{\mathrm{C}} S_{1}$
