Notre Dame Journal of Formal Logic
Volume XV, Number 1, January 1974
NDJFAM

MODELS OF Th $\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$

JOHN W. ROSENTHAL

In this paper* we characterize the models of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$. Our main tool will be the game-theoretic characterization of elementary equivalence given by Ehrenfeucht in [2] (cf. also Fraissé [3]). In particular our work may be viewed as a generalization of Theorem 13 in [2] which gives a characterization of the standard, i.e., well-ordered, models of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$.

The main result, Theorem 3 of section 2, is that a model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ consists of an ultrashort model of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ followed by at each point of an arbitrary linear order ultrashort models of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$ or of $\operatorname{Th}\left(\left\langle\ldots+\omega^{n}+\right.\right.$ $\left.\omega^{n-1}+\ldots+\omega+1+\omega^{\omega},\langle \rangle\right)$, where by an ultrashort model is meant one such that for any two points x, y there is an upper bound on n such that if z is between x and y, z may be a $\lim _{n}$. In Theorems 1 and 2 of section 2 we characterize ultrashort models of these two theories in terms of models of $\mathrm{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.$. In section 1 we characterize models of $\mathrm{Th}\left(\left\langle\omega^{n},\langle \rangle\right)\right.$. In section 3 we discuss short models, namely models having no elements which are $\lim _{n}$ for every n. In section 4 we briefly discuss how the techniques of section 2 can be used to classify the completions of the theory of well-ordering and the element types of $\operatorname{Th}\left(\left\langle\omega^{\omega},\langle \rangle\right)\right.$.

We will assume the reader is familiar with the results and techniques in Ehrenfeucht [2]. In particular we will freely use these without further reference or mention. Several lemmas, in particular Lemmas 6, 7, 8 essentially appear in [4]. We include them for completeness and selfcontainment.

Our notation in general will follow that suggested in Addison, Henkin and Tarski [1]. The games G_{n} are as denoted in Ehrenfeucht [2]. We now briefly indicate our notation for linearly ordered sets:

Ordinals will be denoted as usual.
Usually if it is clear specific mention of the linear order of a linearly ordered set will be omitted.

[^0]
[^0]: *This research was partially supported by NSF GP 19569.

