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THE COMPLETENESS OF SI AND SOME RELATED SYSTEMS

M. J. CRESSWELL

The system SI, although dating back to Lewis and Langford in 1932 [12]

has proved singularly recalcitrant to the algebraic and semantic techniques

applied so successfully to other modal logics. In this paper* we define

Sl-algebras (section 2), use them to prove the finite model property for SI

(section 3), introduce a semantical definition of Sl-validity (section 4) and

make a few remarks about various other systems which seem amenable to

the SI treatment (section 5).

1 The system SI. We use the basis for SI given by Lemmon in [9, p. 178].

Lemmon takes ~, =), and L as primitive with the definitions1:

Def ^ : (a^β) =df L(a 3 β)

Def =: (a= β)=df((a^β) . (β*a))

Def M: Ma =df~L~a

The axioms are:

1.1 Lp^p

1.2 (L(p 3 q) . L(q => r)) D L(p D r)

and the rules:

1.3 If a is a PC-tautology or an axiom then La is a theorem.

1.4 Uniform substitution for propositional variables.

1.5 Modus Ponens: ha, ha 3 β —* hβ

1.6 Substitution of proved strict equivalents.

In view of 1.3 and 1.6 the choice of primitives is immaterial. The

following strict equivalences will frequently be tacitly assumed in what

follows:

*This paper was written in 1969 before the publication of A. Shukla's work on
SI in [15]. A comparison between his algebras and ours is instructive. I am
indebted to Mr. K. E. Pledger of the Victoria University of Wellington Mathematics
Department for drawing my attention to some errors in an .-earlier draft of this
paper.
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