Notre Dame Journal of Formal Logic Volume XIII, Number 4, October 1972 NDJFAM

THE COMPLETENESS OF S1 AND SOME RELATED SYSTEMS

M. J. CRESSWELL

The system S1, although dating back to Lewis and Langford in 1932 [12] has proved singularly recalcitrant to the algebraic and semantic techniques applied so successfully to other modal logics. In this paper* we define S1-algebras (section 2), use them to prove the finite model property for S1 (section 3), introduce a semantical definition of S1-validity (section 4) and make a few remarks about various other systems which seem amenable to the S1 treatment (section 5).

1 The system S1. We use the basis for S1 given by Lemmon in [9, p. 178]. Lemmon takes \sim , \supset , and L as primitive with the definitions¹:

Def \Rightarrow : $(\alpha \mapsto \beta) =_{df} L(\alpha \supset \beta)$ Def \Rightarrow : $(\alpha = \beta) =_{df} ((\alpha \mapsto \beta) \cdot (\beta \mapsto \alpha))$ Def \Rightarrow : $M\alpha =_{df} \sim L \sim \alpha$

The axioms are:

1.1 $Lp \supset p$ 1.2 $(L(p \supset q) \cdot L(q \supset r)) \supset L(p \supset r)$

and the rules:

- 1.3 If α is a PC-tautology or an axiom then $L\alpha$ is a theorem.
- 1.4 Uniform substitution for propositional variables.
- 1.5 Modus Ponens: $\vdash \alpha$, $\vdash \alpha \supset \beta \rightarrow \vdash \beta$
- 1.6 Substitution of proved strict equivalents.

In view of 1.3 and 1.6 the choice of primitives is immaterial. The following strict equivalences will frequently be tacitly assumed in what follows:

^{*}This paper was written in 1969 before the publication of A. Shukla's work on S1 in [15]. A comparison between his algebras and ours is instructive. I am indebted to Mr. K. E. Pledger of the Victoria University of Wellington Mathematics Department for drawing my attention to some errors in an earlier draft of this paper.