Notre Dame Journal of Formal Logic Volume XIX, Number 3, July 1978 NDJFAM

RELATIVE STRENGTH OF MALITZ QUANTIFIERS

STEVEN GARAVAGLIA

In this paper I will solve a problem concerning Malitz quantifiers which was posed in [1]. Before stating this problem I will introduce some notation which will be used in the proof. If X is a set then c(X) is the cardinality of X and $[X]^n$ is the set of *n*-element subsets of X. S_n is the set of permutations of $\{1, 2, \ldots, n\}$. If \mathfrak{A} is a structure $|\mathfrak{A}|$ denotes the domain of \mathfrak{A} . If \mathfrak{L} is a first-order language, $\mathfrak{L}(|\mathfrak{A}|)$ is the result of adjoining to \mathfrak{L} one constant symbol for each element of $|\mathfrak{A}|$. No distinction will be made between elements of $|\mathfrak{A}|$ and the constant symbols denoting them. Variables will be denoted $x_1, x_2, \ldots, y_1, y_2, \ldots$.

Now let \mathcal{L} be any first-order language. For each n and each infinite cardinal α a language \mathcal{L}_{α}^{n} is obtained from \mathcal{L} by adjoining the quantifier \mathbb{Q}_{α}^{n} with the following interpretation: $\mathfrak{A} \models \mathbb{Q}_{\alpha}^{n} x_{1} \ldots x_{n} \varphi(x_{1}, \ldots, x_{n})$ if and only if there is a set $X \subset |\mathfrak{A}|$ such that $c(X) \ge \alpha$ and for all distinct a_{1}, \ldots, a_{n} in $X, \mathfrak{A} \models \varphi(a_{1}, \ldots, a_{n})$. Malitz and Magidor [2] and Badger [1] have established many deep and interesting results concerning these languages. In [1], page 91, Badger gave a list of unsolved problems about the languages \mathcal{L}_{α}^{n} . There he raised the question whether $\mathcal{L}_{\alpha}^{n+1}$ is a proper extension of \mathcal{L}_{α}^{n} . In this paper I answer this question affirmatively for all $n \ge 1$ and all $\alpha > \omega$ by exhibiting two structures \mathfrak{A} and \mathfrak{B} of the same similarity type such that \mathfrak{A} and \mathfrak{B} satisfy the same sentences in \mathcal{L}_{α}^{n} but do not satisfy the same sentences in $\mathcal{L}_{\alpha}^{n+1}$.

Let *n* be any fixed positive integer and let α be any fixed uncountable cardinal. \mathcal{L} will be a first-order language with equality whose only nonlogical symbol is an (n + 1)-ary predicate symbol *R*.

Definition 1: If \mathfrak{A} is an \mathcal{L} -structure, γ is a finite subset of $|\mathfrak{A}|$, $\sigma \in S_{n+1}$, and $t_1, \ldots, t_{n+1} \in \gamma \cup \{x_1, \ldots, x_k, y_1, \ldots, y_k\}$ then $\sigma(t_1, \ldots, t_{n+1})$ is the (n + 1)-tuple $(t_{\sigma(1)}, \ldots, t_{\sigma(n+1)})$ and $\sigma R(t_1, \ldots, t_{n+1})$ is the $\mathcal{L}(|\mathfrak{A}|)$ -formula $R(t_{\sigma(1)}, \ldots, t_{\sigma(n+1)})$.

^{1.} For $a = \omega_1$, this result was obtained independently by Andreas Baudisch under the assumption \Diamond_{ω_1} .