RELATIVE STRENGTH OF MALITZ QUANTIFIERS

STEVEN GARAVAGLIA

In this paper I will solve a problem concerning Malitz quantifiers which was posed in [1]. Before stating this problem I will introduce some notation which will be used in the proof. If X is a set then $c(X)$ is the cardinality of X and $[X]^{n}$ is the set of n-element subsets of $X . S_{n}$ is the set of permutations of $\{1,2, \ldots, n\}$. If \mathfrak{A} is a structure $|\boldsymbol{A}|$ denotes the domain of \mathfrak{M}. If \mathcal{L} is a first-order language, $\mathcal{L}(|\mathfrak{A}|)$ is the result of adjoining to \mathcal{L} one constant symbol for each element of $|\boldsymbol{A}|$. No distinction will be made between elements of $|\boldsymbol{A}|$ and the constant symbols denoting them. Variables will be denoted $x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots$

Now let \mathcal{L} be any first-order language. For each n and each infinite cardinal α a language \mathcal{L}_{α}^{n} is obtained from \mathcal{K} by adjoining the quantifier Q_{α}^{n} with the following interpretation: $\mathfrak{A} \vDash Q_{\alpha}^{n} x_{1} \ldots x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$ if and only if there is a set $X \subset|\boldsymbol{M}|$ such that $\mathrm{c}(X) \geqslant \alpha$ and for all distinct a_{1}, \ldots, a_{n} in $X, \mathfrak{M} \vDash \varphi\left(a_{1}, \ldots, a_{n}\right)$. Malitz and Magidor [2] and Badger [1] have established many deep and interesting results concerning these languages. In [1], page 91, Badger gave a list of unsolved problems about the languages \mathcal{L}_{α}^{n}. There he raised the question whether $\mathcal{L}_{\alpha}^{n+1}$ is a proper extension of \mathscr{L}_{α}^{n}. In this paper I answer this question affirmatively for all $n \geqslant 1$ and all $\alpha>\omega$ by exhibiting two structures \mathfrak{A} and \mathfrak{B} of the same similarity type such that \mathfrak{A} and \mathfrak{B} satisfy the same sentences in \mathscr{L}_{α}^{n} but do not satisfy the same sentences in $\mathcal{L}_{\alpha}^{n+1}$. ${ }^{1}$

Let n be any fixed positive integer and let α be any fixed uncountable cardinal. \mathcal{L} will be a first-order language with equality whose only nonlogical symbol is an $(n+1)$-ary predicate symbol R.

Definition 1: If \mathfrak{A} is an \mathcal{K}-structure, γ is a finite subset of $|\mathfrak{A}|, \sigma \in S_{n+1}$, and $t_{1}, \ldots, t_{n+1} \epsilon \gamma \cup\left\{x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}\right\}$ then $\sigma\left(t_{1}, \ldots, t_{n+1}\right)$ is the $(n+1)-$ tuple $\left(t_{\sigma(1)}, \ldots, t_{\sigma(n+1)}\right)$ and $\sigma R\left(t_{1}, \ldots, t_{n+1}\right)$ is the $\mathcal{L}(|\boldsymbol{\mu}|)$-formula $R\left(t_{\sigma(1)}\right.$, ..., $\left.t_{\sigma(n+1)}\right)$.

[^0]
[^0]: 1. For $a=\omega_{1}$, this result was obtained independently by Andreas Baudisch under the assumption $\diamond_{\omega_{1}}$.
