Notre Dame Journal of Formal Logic Volume XVIII, Number 1, January 1977 NDJFAM

A STRONG COMPLETENESS THEOREM FOR 3-VALUED LOGIC: PART II

HUGUES LEBLANC

Proof¹ was given in [1] that SC_3 , the 3-valued sentential calculus, has a strongly complete axiomatization. Pushing our investigation one step further,² we obtain here a like result about QC_3 , the 3-valued quantificational calculus of order one.³

1 The primitive signs of QC_3 are

(a) '~', ' \supset ', ' \forall ', '(', ')', and ',',

(b) a denumerable infinity of individual variables, to be referred to by means of X',⁴

(c) a denumerable infinity of individual parameters, to be referred to by means of $(X')^5$ and

(d) for each d from 0 on, a denumerable infinity of predicate parameters of degree d, to be referred to by means of F^{d} .⁶

We presume the variables in (b), the parameters in (c), and the parameters in (d) to be alphabetically ordered; and we take the alphabetically first parameter of degree d in (d) to be 'p'.

The atomic wffs of \mathbf{QC}_3 are all formulas of the sort $F^d(X_1, X_2, \ldots, X_d)$, where F^d is a predicate parameter of degree d ($d \ge 0$) and X_1, X_2, \ldots , and X_d are individual parameters. The wffs of \mathbf{QC}_3 (presumed at one point below to be alphabetically ordered) are the atomic wffs just defined, plus all formulas of the sorts (i) $\sim A$, where A is well-formed, (ii) ($A \supset B$), where A and B are well-formed, and (iii) ($\forall X$)A, where—for some individual parameter X—the result A(X/X) of replacing X everywhere in A by X is well-formed.⁷ The length $\mathcal{L}(A)$ of an atomic wff is 1; the length $\mathcal{L}(\sim A)$ of a negation $\sim A$ is $\mathcal{L}(A) + 1$; the length $\mathcal{L}((A \supset B))$ of a conditional ($A \supset B$) is $\mathcal{L}(A) + \mathcal{L}(B) + 1$; and the length $\mathcal{L}((\forall X)A)$ of a quantification ($\forall X$)A is $\mathcal{L}(A(X/X)) + 1$, where X is the alphabetically earliest individual parameter of \mathbf{QC}_3 . We avail ourselves of the following ten abbreviations:

$$(f' =_{df} (\sim (p \supset p)))$$

$$(A \lor B) =_{df} ((A \supset B) \supset B)^{8}$$

$$(A \& B) =_{df} \sim (\sim A \lor \sim B)$$

$$(A \equiv B) =_{df} ((A \supset B) \& (B \supset A))$$

Received May 24, 1974