On Uncountable Boolean Algebras With No Uncountable Pairwise Comparable or Incomparable Sets of Elements

SAHARON SHELAH

Elements *a*, *b*, of a Boolean algebra are said to be *comparable* iff either $a \le b$ or $b \le a$, otherwise *incomparable*. A *chain* in a Boolean algebra is a set of pairwise comparable elements, while a *pie* is a set of pairwise incomparable elements.

In [2] Baumgartner and Komjath proved, using \Diamond_{\aleph_1} :

Theorem 1 (Baumgartner-Komjath) Assume $\diamond_{\aleph_{\Gamma}}$ There is an uncountable Boolean algebra with no uncountable chain or pie.

In [6] Rubin, also using \Diamond_{\aleph_1} , proved:

Theorem 2 (Rubin) Assume \diamond_{\aleph_1} . There is a Boolean algebra B, with $\overline{\overline{B}} = \aleph_1$, in which every ideal is \aleph_0 -generated and every subalgebra is generated by an ideal and \aleph_0 elements. Thus, B has only \aleph_1 ideals and subalgebras.

Using only CH, Berney and Nyckos [3] and Bonnet [4] proved:

Theorem 3 Assume CH. There is an uncountable Boolean algebra with no uncountable pie.

They chose a set A of reals of cardinality \aleph_1 , and the Boolean algebra is the Boolean algebra of subsets of the reals generated by (r, s), $r, s \in A$.

In the opposite direction, Baumgartner [1] showed:

Theorem 4 It is consistent with ZFC that $2^{\aleph_0} = \aleph_2$, Martin's axiom holds, and every Boolean algebra of cardinality \aleph_1 contains an uncountable pie.