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On Uncountable Boolean Algebras

With No Uncountable Pairwise

Comparable or Incomparable

Sets of Elements

SAHARON SHELAH

Elements a, b, of a Boolean algebra are said to be comparable iff either
a < b or b < a, otherwise incomparable. A chain in a Boolean algebra is a set of
pairwise comparable elements, while a pie is a set of pairwise incomparable
elements.

In [2] Baumgartner and Komjath proved, using 0 ^ :

Theorem 1 (Baumgartner-Komjath) Assume 0^ . There is an uncountable
Boolean algebra with no uncountable chain or pie.

In [6] Rubin, also using 0 ^ , proved:

Theorem 2 (Rubin) Assume 0#r There is a Boolean algebra B, with B - N1}

in which every ideal is #0-generated and every subalgebra is generated by an
ideal and ft0 elements. Thus, B has only ^ ideals and subalgebras.

Using only C/7, Berney and Nyckos [3] and Bonnet [4] proved:

Theorem 3 Assume CH. There is an uncountable Boolean algebra with no
uncountable pie.

They chose a set A of reals of cardinality ttl5 and the Boolean algebra is
the Boolean algebra of subsets of the reals generated by (r, s), r, s e A.

In the opposite direction, Baumgartner [ 1] showed:

Theorem 4 It is consistent with ZFC that 2*o = ft2, Martin's axiom holds,
and every Boolean algebra of cardinality ftx contains an uncountable pie.
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