Stationary Logic and Its Friends – II

ALAN H. MEKLER* and SAHARON SHELAH**

Introduction This paper is the successor to "Stationary Logic and Its Friends – I" [10]. The three sections of the paper can be read independently. The first two sections assume some familiarity with stationary logic, denoted L(aa) (see [2]). The third section concerns a closure operation for abstract logic. There a familiarity with [9] would be helpful.

In the first section we define, for regular λ , the λ -interpretation of L(aa), denoted $L(aa^{\lambda})$. In this notation, the standard interpretation is $L(aa^{\omega})$. The most easily understandable case occurs when $\lambda^{<\lambda} = \lambda$. Then for models with universe λ^+ , aa^{λ} expresses "for all but a nonstationary set of ordinals of co-finality λ ". We show if $\lambda^{<\lambda} = \lambda$, then $L(aa^{\lambda})$ has the same validities as $L(aa^{\omega})$ and $L(aa^{\lambda})$ is (λ, ω) -compact.

The second section is devoted to the proof of the consistency of the following approximation to the Δ -closure of L(Q) being contained in L(aa).

Suppose $L_1 \cap L_2 = L_0$, $\psi_1 \in L_1(Q)$ and $\psi_2 \in L_2(Q)$.

Further suppose every finitely determinate L_0 -structure *either* can be expanded to a model of exactly one of ψ_1 of ψ_2 or can be expanded to a finitely determinate model of exactly one of ψ_1 or ψ_2 .

Then there is a sentence $\theta \in L_0(aa)$ such that every finitely determinate model of ψ_1 satisfies θ and no finitely determinate model of ψ_2 satisfies θ . (So θ separates the reducts of finitely determinate models of ψ_1 from those of ψ_2 .)

(See Section 2 for the definition of finitely determinate. Of course Q is the quantifier expressing "there exist uncountably many".) In [10] we showed that every consistent L(Q)-sentence has a finitely determinate model. So this result establishes the consistency of the Δ -closure of L(Q) being contained in L(aa)

^{*}Research supported by Natural Sciences and Engineering Council of Canada Grant #U0075.

^{**}Research supported by the US-Israel Binational Science Foundation.