Notre Dame Journal of Formal Logic Volume XX, Number 4, October 1979 NDJFAM

BETH'S TABLEAUX FOR RELEVANT LOGIC

J. F. PABION

1 Sequents – Countermodels For the concept of relevant-model-structure (r.m.s.) we* refer to [2]. Giving a r.m.s. $\mathfrak{N} = \langle K, 0, R, * \rangle$ satisfying postulates \mathbf{P}_1 - \mathbf{P}_6 of [2], a "forcing relation" is defined between K and the set of atomic sentences defined in a given domain D such that:

$$\alpha \Vdash A \text{ and } R(0, \alpha, \beta) \Longrightarrow \beta \Vdash A.$$

Then the forcing relation is extended according to usual stipulations:

 $\alpha \Vdash A \lor B \Leftrightarrow \alpha \Vdash A \text{ or } \alpha \Vdash B$ $\alpha \Vdash A \land B \Leftrightarrow \alpha \Vdash A \text{ and } \alpha \Vdash B$ $\alpha \Vdash A \land B \Leftrightarrow \forall \beta, \gamma, \beta \Vdash A \text{ and } R(\alpha, \beta, \gamma) \Rightarrow \gamma \Vdash B$ $\alpha \Vdash \overline{A} \Leftrightarrow \alpha^* \Vdash A$ $\alpha \Vdash \forall xF[x] \Leftrightarrow \forall a \in D, \alpha \Vdash F[a].$

A signed formula is an expression of one of the forms:

+A -A

where A is a formula. A *sequent* is a finite sequence of signed sentences. A *countermodel* of a sequent is given by:

A r.m.s.
$$\mathfrak{N} = \langle K, 0, R, * \rangle$$
.

A member α of K such that:

If +A is in the sequent, then $\alpha \Vdash A$ If -A is in the sequent, then $\alpha \nvDash A$.

 $\langle \mathfrak{N}, \alpha \rangle$ is a normal countermodel if $\alpha = 0$ and $0^* = 0$. The sequent is said to be valid if it has no countermodel and normally valid if it has no normal countermodel.

^{*}The author is grateful to professors Belnap, Dunn, and Meyer for having focalized his attention on typical mistakes contained in some tentative proofs.