INTEGRAL CLOSURES, LOCAL COHOMOLOGY AND IDEAL TOPOLOGIES

R. NAGHIPOUR

ABSTRACT. Let (R,\mathfrak{m}) be a formally equidimensional local ring of dimension d. Suppose that Φ is a system of nonzero ideals of R such that, for all minimal prime ideals \mathfrak{p} of R, $\mathfrak{a}+\mathfrak{p}$ is \mathfrak{m} -primary for every $\mathfrak{a}\in\Phi$. In this paper, the main result asserts that for any ideal \mathfrak{b} of R, the integral closure $\mathfrak{b}^*(H^d_\Phi(R))$ of \mathfrak{b} with respect to the Artinian R-module $H^d_\Phi(R)$ is equal to \mathfrak{b}_a , the classical Northcott-Rees integral closure of \mathfrak{b} . This generalizes the main result of [13] concerning the question raised by D. Rees.

1. Introduction. Let R denote a commutative Noetherian ring (with identity) of dimension d, and let A be an Artinian R-module. We say that the ideal \mathfrak{a} of R is a reduction of the ideal \mathfrak{b} of R with respect to A if $\mathfrak{a} \subseteq \mathfrak{b}$ and there exists an integer $s \geq 1$ such that $(0:_A \mathfrak{ab}^s) = (0:_A \mathfrak{b}^{s+1})$. An element x of R is said to be integrally dependent on \mathfrak{a} with respect to A if \mathfrak{a} is a reduction of $\mathfrak{a} + Rx$ with respect to A, see [12]. Moreover, the set $\mathfrak{a}^{*(A)} := \{x \in R \mid x \text{ is integrally dependent on } \mathfrak{a}$ with respect to A} is an ideal of R, called the integral closure of \mathfrak{a} with respect to A.

In [13] the dual concepts of reduction and integral closure of the ideal \mathfrak{b} with respect to a Noetherian R-module N were introduced; we shall use $\mathfrak{b}_a^{(N)}$ to denote the integral closure of \mathfrak{b} with respect to N. If N=R, then $\mathfrak{b}_a^{(N)}$ reduces to that the usual Northcott-Rees integral closure \mathfrak{b}_a of \mathfrak{h}

The purpose of the present paper is to show that, for any system of ideals Φ of a formally equidimensional local ring (R, \mathfrak{m}) of dimension d, if $\operatorname{Rad}(\mathfrak{a} + \mathfrak{p}) = \mathfrak{m}$ for all minimal primes \mathfrak{p} of R and for every $\mathfrak{a} \in \Phi$, then $\mathfrak{b}^{*(H_{\Phi}^d(R))}$, the integral closure of \mathfrak{b} with respect to $H_{\Phi}^d(R)$, is equal

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 13D45, 13B20, 13E05. Key words and phrases. Integral closures, local cohomology, formally equidimensional rings.

This research was been in part supported by a grant from IPM (No. 81130020). Received by the editors on May 25, 2004, and in revised form on Feb. 5, 2005.