GENERALIZED FREE PRODUCTS OF π_c GROUPS

P.C. WONG AND H.L. KOAY

ABSTRACT. A group G is said to be π_c if and only if for every pair of elements g_1 and g_2 of G either $g_1=g_2^k$ for some integer k or there exists a normal subgroup N of finite index in G such that $g_1\not\equiv g_2^z \mod N$ for all integers z. In this note we prove that a certain generalized free product amalgamating a cyclic subgroup is π_c and then apply the result to show some one-relator groups are π_c .

1. Introduction. A group G is termed π_c if and only if for every pair of elements g_1 and g_2 of G either $g_1 = g_2^k$ for some integer k or there exists a normal subgroup N of finite index in G such that $g_1 \not\equiv g_2^z \mod N$ for all integers z. Clearly, a π_c group is residually finite. However, the one-relator group $G = \langle a, b; a^{-1}ba = b^2 \rangle$ is residually finite but not π_c [1]. Examples of π_c groups are the finite groups, free groups and finitely generated torsion-free nilpotent groups [4, 5].

In [7], Stebe proved that the generalized free products of isomorphic π_c groups amalgamating a cyclic subgroup are again π_c . In this note, we shall prove the following theorem.

Theorem. Let A and B be π_c groups and let $a \in A$ and $b \in B$ where a and b have the same order. If A is $\langle a \rangle$ -Pot and B is $\langle b \rangle$ -Pot, then the generalized free product G of A and B amalgamating the subgroups $\langle a \rangle$ and $\langle b \rangle$ with a = b, is π_c .

Modifying [2], a group G is termed $\langle x \rangle$ -potent (or $\langle x \rangle$ -Pot for short) for a nontrivial element x of G if and only if for every positive integer n (dividing the order of x if the order is finite) there exists a normal subgroup N of finite index in G such that xN has order exactly n in G/N. G is termed potent if it is $\langle x \rangle$ -Pot for every nontrivial element x

Received by the editors on July 31, 1989, and in revised form on June 15, 1990, 1980 AMS Mathematics Subject Classification. Primary 20E25, 20E30; Secondary 20F05.

Key words and phrases. Generalized free product, one-relator group residually finite, π_c , potent.