ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 29, Number 2, Summer 1999

FINITE CODIMENSIONAL INVARIANT SUBSPACES
OF BANACH SPACES OF ANALYTIC FUNCTIONS

A. ABDOLLAHI AND K. SEDDIGHI

ABSTRACT. Let G be a bounded domain in the complex
plane. Let £ be a Banach space of functions analytic on G,
such that for each A € G the linear functional ey of evaluation
at A is bounded on €. Assume further that 2z C £ and, for
every A € G, ran (M, — \) = kerey. Here M, is the operator
of multiplication by z on £ given by f +— zf. In this article
we characterize the finite codimensional subspaces of £ which
are invariant under M, in some special cases.

1. Introduction. Let G be a bounded domain in the complex plane.
Let £ be a Banach space of functions analytic on G such that for each
A € G the linear functional e, of evaluation at A is bounded on £.
Assume further that z€ C £ and for every Ain G, ran (M, —\) = kere,.
A Banach space £ with all the above properties is called a Banach space
of analytic functions and is called a Banach space of functions if we only
have z€ C €. As aresult we conclude that M, — ) is Fredholm for every
A € G and because dimker(M} — X) = 1 we have ind (M, — \) = —1
for A € G. A function ¢ : G — C with the property o€ C &£ is called
a multiplier on £, and the collection of all these multipliers is denoted
by M(E). If ¢ € M(E), then the operator M, of multiplication by ¢
is bounded.

Richter [11] has shown that the commutant of the operator M, is
equal to {M, : ¢ € M(E)}. This makes M(E) into a Banach space
by defining ||¢||se) = [|My|lz(e)- Tt is also true that M(E) C H*(G)
and for each ¢ € M(E), [|¢|lco < [[Myllze) = ll@llace). Now suppose
that M(&) contains a norm closed subalgebra A of H*°(G). Then the
above inequality shows that A is also closed in M(E) and the open
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