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PARA-ORTHOGONAL POLYNOMIALS
IN FREQUENCY ANALYSIS

LEYLA DARUIS, OLAV NJASTAD AND WALTER VAN ASSCHE

1. Introduction. By a trigonometric signal we mean an expression
of the form
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and we assume a_; =@, and w_; = —w; € (0,7) for j =1,2,... 1.

The constants «; represent amplitudes, the quantities w; are frequen-
cies, and m is discrete time. The frequency analysis problem is to
determine the numbers {a;,w; : j = 1,2,...,I}, and ng = 2I when
values {z(m) : m =0,1,... ,N — 1} (observations) are known.

The Wiener-Levinson method, formulated in terms of Szeg6 poly-
nomials, can briefly be described as follows (the original ideas of the
method can be found in [12, 20]). An absolutely continuous measure
¥ is defined on [, 7] (or on the unit circle T through the transfor-
mation 6 — z = €'?) by the formula
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Here N is an arbitrary natural number. The measure gives rise to a pos-
itive definite inner product which determines a sequence {®,(¢n, 2) :
n =0,1,2...} of monic orthogonal polynomials (Szegd polynomials).
All the zeros of @, (1, 2) lie in the open unit disk.

Let v, (¥, 2) be the orthonormal polynomials (with positive leading
coefficient k) with respect to ¥n. Then we have
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