BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 33, Number 3, Fall 2003

MULTIPLICATIVE SK INVARIANTS ON Z_n-MANIFOLDS WITH BOUNDARY

TAMIO HARA

ABSTRACT. Let \mathbf{Z}_n be the cyclic group of order n. In this paper, we study a map T for \mathbf{Z}_n -manifolds with boundary which takes values in the ring \mathbf{Z} and is additive with respect to the disjoint union of \mathbf{Z}_n -manifolds. We call T a \mathbf{Z}_n -SK invariant if it is invariant under \mathbf{Z}_n -cuttings and pastings. Then T induces an additive homomorphism $T: SK_*^{\mathbf{\hat{z}}_n}(pt, pt) \to \mathbf{Z}$, where $SK_*^{\mathbf{Z}_n}(pt, pt)$ is a cutting and pasting group (SK group) of all \mathbf{Z}_n -manifolds. First we obtain a basis of a free **Z**-module $\mathcal{I}_{\mathbf{x}}^{\mathbf{Z}_n}$ of all these invariants by using the Euler characteristic $\overline{\chi}$ of manifolds with boundary. As a result, we determine the class of all multiplicative invariants, which includes $\overline{\chi}^{\mathbf{Z}_s}$ (and $\chi^{\mathbf{Z}_s})$ in particular.

Introduction. Let G be a finite abelian group. Throughout this paper, by a G-manifold we mean an unoriented compact smooth manifold (which may have boundary) with smooth G-action. In [2] and [3], we have studied an equivariant cutting and pasting theory (SK theory) $SK^G_*(pt, pt)$ based on G-manifolds by using the notion of G-slice types. We now consider a map T for G-manifolds which takes values in the ring \mathbf{Z} of rational integers and is additive with respect to the disjoint union of G-manifolds. We call T a G-SK invariant if it is invariant under G-cuttings and pastings. Furthermore, such T is said to be multiplicative if $T(M \times N) = T(M)T(N)$ for any G-manifolds M and N. Let $\overline{\chi}(M) = \chi(M) - \chi(\partial M)$ for a pair $(M, \partial M)$ of G-manifold and its boundary, where χ is the Euler characteristic. Then $\overline{\chi}^H$ and χ^H are multiplicative *G*-SK invariants for any subgroup *H* of *G*, where $\overline{\chi}^H(M) = \overline{\chi}(M^H), \chi^H(M) = \chi(M^H)$ and $M^{H} = \{ x \in M \mid hx = x \text{ for any } h \in H \}.$

The main object of this paper is to study such kind of invariants when G is the cyclic group \mathbf{Z}_n of order $n, n \geq 1$. Here \mathbf{Z}_1 is the trivial group $\{1\}.$

¹⁹⁹¹ AMS Subject Classifications. 57S17 Received by the editors on October 24, 1997, and in revised form on May 25, 2001.

Copyright ©2003 Rocky Mountain Mathematics Consortium