MULTIPLICATIVE $S K$ INVARIANTS ON Z_{n}-MANIFOLDS WITH BOUNDARY

TAMIO HARA

Abstract

Let \mathbf{Z}_{n} be the cyclic group of order n. In this paper, we study a map T for \mathbf{Z}_{n}-manifolds with boundary which takes values in the ring \mathbf{Z} and is additive with respect to the disjoint union of \mathbf{Z}_{n}-manifolds. We call T a \mathbf{Z}_{n}-SK invariant if it is invariant under \mathbf{Z}_{n}-cuttings and pastings. Then T induces an additive homomorphism $T: S K_{*}^{\mathbf{Z}_{n}}(p t, p t) \rightarrow \mathbf{Z}$, where $S K_{*}^{\mathbf{Z}_{n}}(p t, p t)$ is a cutting and pasting group (SK group) of all \mathbf{Z}_{n}-manifolds. First we obtain a basis of a free \mathbf{Z}-module $\mathcal{I}_{*}^{\mathbf{Z}}{ }_{n}$ of all these invariants by using the Euler characteristic $\bar{\chi}$ of manifolds with boundary. As a result, we determine the class of all multiplicative invariants, which includes $\bar{\chi}^{\mathbf{Z}_{s}}$ (and $\chi^{\mathbf{Z}_{s}}$) in particular.

Introduction. Let G be a finite abelian group. Throughout this paper, by a G-manifold we mean an unoriented compact smooth manifold (which may have boundary) with smooth G-action. In [2] and [3], we have studied an equivariant cutting and pasting theory (SK theory) $S K_{*}^{G}(p t, p t)$ based on G-manifolds by using the notion of G-slice types. We now consider a map T for G-manifolds which takes values in the ring \mathbf{Z} of rational integers and is additive with respect to the disjoint union of G-manifolds. We call T a G-SK invariant if it is invariant under G-cuttings and pastings. Furthermore, such T is said to be multiplicative if $T(M \times N)=T(M) T(N)$ for any G-manifolds M and N. Let $\bar{\chi}(M)=\chi(M)-\chi(\partial M)$ for a pair $(M, \partial M)$ of G-manifold and its boundary, where χ is the Euler characteristic. Then $\bar{\chi}^{H}$ and χ^{H} are multiplicative G-SK invariants for any subgroup H of G, where $\bar{\chi}^{H}(M)=\bar{\chi}\left(M^{H}\right), \chi^{H}(M)=\chi\left(M^{H}\right)$ and $M^{H}=\{x \in M \mid h x=x$ for any $h \in H\}$.

The main object of this paper is to study such kind of invariants when G is the cyclic group \mathbf{Z}_{n} of order $n, n \geq 1$. Here \mathbf{Z}_{1} is the trivial group $\{1\}$.

[^0]
[^0]: 1991AMS Subject Classifications. 57 S 17
 Received by the editors on October 24, 1997, and in revised form on May 25, 2001.

