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SHARP INEQUALITIES FOR
THE HURWITZ ZETA FUNCTION

HORST ALZER

ABSTRACT. We prove the following double-inequality for
the Hurwitz zeta function ζ(p, a) =

∑∞
ν=0

(ν + a)−p.

Let m and n be integers with m > n ≥ 0 and let a be
a positive real number. Then we have for all real numbers
p > 1:

m + 1 + a

n + 1 + a
<

(
ζ(p, a) −

∑n

ν=0
(ν + a)−p

ζ(p, a) −
∑m

ν=0
(ν + a)−p

)1/(p−1)

< exp

( m∑
ν=n+1

1

ν + a

)
.

Both bounds are best possible.

Our theorem extends and refines a result of Bennett [2].

1. Introduction. In order to prove a sharp lower bound for the
Cesàro matrix, Bennett [2] applied the following inequality for the
“tail” of the series representation of the classical Riemann zeta function:

fp(n) < fp(n + 1), n = 1, 2, . . . ,

where

fp(n) = np−1
∞∑

ν=n+1

ν−p, p > 1.

The monotonicity of fp provides an interesting upper bound for the

ratio
(∑∞

ν=n+1 ν−p/
∑∞

ν=m+1 ν−p
)1/(p−1)

, which does not depend on
p:

(1.1)
(

ζ(p) − ∑n
ν=1 ν−p

ζ(p) − ∑m
ν=1 ν−p

)1/(p−1)

<
m

n
, p > 1; m > n ≥ 1.
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