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AN EIGENVALUE PROBLEM FOR
QUASILINEAR SYSTEMS

JOHNNY HENDERSON AND HAIYAN WANG

ABSTRACT. The paper deals with the existence of positive
solutions for the n-dimensional quasilinear system (Φ(u′))′ +
λh(t)f(u) = 0, 0 < t < 1, with the boundary condition u(0) =
u(1) = 0. The vector-valued function Φ is defined by Φ(u) =
(ϕ(u1), . . . , ϕ(un)), where u = (u1, . . . , un), and ϕ covers
the two important cases ϕ(u) = u and ϕ(u) = |u|p−2u, p > 1,
h(t) = diag [h1(t), . . . , hn(t)] and f(u) = (f1(u), . . . , fn(u)).
Assume that f i and hi are nonnegative continuous. For
u = (u1, . . . , un), let f i

0 = lim‖u‖→0 f i(u)/ϕ(‖u‖), f i∞ =

lim‖u‖→∞ f i(u)/ϕ(‖u‖), i = 1, . . . , n, f0 = max{f1
0 , . . . , fn

0 }
and f∞ = max{f1∞, . . . , fn∞}. We prove that the boundary
value problem has a positive solution, for certain finite inter-
vals of λ, if one of f0 and f∞ is large enough and the other one
is small enough. Our methods employ fixed point theorems in
a cone.

1. Introduction. In this paper we consider the eigenvalue problem
for the system

(1.1) (Φ(u′))′ + λh(t) f(u) = 0, 0 < t < 1,

with one of the following three sets of the boundary conditions,

u(0) = u(1) = 0,(1.2a)
u′(0) = u(1) = 0,(1.2b)
u(0) = u′(1) = 0,(1.2c)

where u = (u1, . . . , un), Φ(u) = (ϕ(u1), . . . , ϕ(un)), h(t) = diag ×
[h1(t), . . . , hn(t)] and f(u) = (f1(u1, . . . , un), . . . , fn(u1, . . . , un)). We
understand that u, Φ and f(u) are (column) n-dimensional vector-
valued functions. Equation (1.1) means that

(1.3)

⎧⎪⎨
⎪⎩

(ϕ(u′1))′ + λh1(t) f1(u1, . . . , un) = 0, 0 < t < 1
...

(ϕ(u′n))′ + λhn(t) fn(u1, . . . , un) = 0, 0 < t < 1
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