EQUAL SUMS OF SEVENTH POWERS

AJAI CHOUDHRY

Abstract

Until now only three numerical solutions of the diophantine equation $x_{1}^{7}+x_{2}^{7}+x_{3}^{7}+x_{4}^{7}=y_{1}^{7}+y_{2}^{7}+$ $y_{3}^{7}+y_{4}^{7}$ are known. This paper provides three numerical solutions in positive integers of the hitherto unsolved system of simultaneous diophantine equations $x_{1}^{k}+x_{2}^{k}+x_{3}^{k}+x_{4}^{k}=$ $y_{1}^{k}+y_{2}^{k}+y_{3}^{k}+y_{4}^{k}, k=1,3$ and 7 .

Parametric solutions of the diophantine equation

$$
\begin{equation*}
\sum_{i=1}^{n} x_{i}^{7}=\sum_{i=1}^{n} y_{i}^{7} \tag{1}
\end{equation*}
$$

have been given by Sastri and Rai [5] when $n=6$ and by Gloden [3], [4] when $n=5$. When $n=4$, only three numerical solutions of (1) are known. These were discovered by Ekl [1], [2] via computer search.

In this paper we obtain three numerical solutions in positive integers of the hitherto unsolved system of diophantine equations

$$
\begin{equation*}
\sum_{i=1}^{4} x_{i}^{k}=\sum_{i=1}^{4} y_{i}^{k}, \quad k=1,3,7 \tag{2}
\end{equation*}
$$

To solve the system of equations (2), we write

$$
\begin{array}{ll}
x_{1}=X_{1}-X_{2}-X_{3}, & y_{1}=Y_{1}-Y_{2}-Y_{3} \\
x_{2}=-X_{1}+X_{2}-X_{3}, & y_{2}=-Y_{1}+Y_{2}-Y_{3} \tag{3}\\
x_{3}=-X_{1}-X_{2}+X_{3}, & y_{3}=-Y_{1}-Y_{2}+Y_{3} \\
x_{4}=X_{1}+X_{2}+X_{3}, & y_{4}=Y_{1}+Y_{2}+Y_{3}
\end{array}
$$

Then we have the identities

$$
\sum_{i=1}^{4} x_{i}=0, \quad \sum_{i=1}^{4} x_{i}^{3}=24 X_{1} X_{2} X_{3}
$$

Received by the editors on June 25, 1999.

