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SYMPLECTIC GEOMETRY OF VECTOR BUNDLE
MAPS OF TANGENT BUNDLES

PO-HSUN HSIEH

ABSTRACT. If (M, g) is a Riemannian manifold, then
TM has a canonical almost Kähler structure. The deriva-
tive of a map of Riemannian manifolds rarely preserves the
Kähler forms of the tangent bundles, even up to conformal-
ity. Thus we define a weakening of symplectomorphism, called
H-isotropic map and study the H-isotropy of vector bundle
maps.

1. Introduction and notation. If L is a submanifold of an almost
Hermitian manifold (N, J, g, ω), ω = g(J ·, ·), then the normal bundle
L⊥ of L also possesses an almost Hermitian structure (Ĵ , ĝ, ω̂). Here
ω̂ is called the canonical almost symplectic structure of L⊥ (cf. [4]).
An interesting problem in symplectic geometry is: when are ω and ω̂
isomorphic? (Cf. [6], [4].) A job relevant to this problem is to study
vector bundle maps between two such bundles L⊥

1 and L⊥
2 (e.g., [4,

Theorem 4.1]). The tangent bundle of a Riemannian manifold can be
thought of as a special case of a normal bundle of an almost Hermitian
manifold [4]. Moreover, the almost symplectic form on TM is in fact
just a pull-back of the canonical symplectic form on T ∗M . Thus we
are motivated to study the symplectic geometry of vector bundle maps
of tangent bundles of Riemannian manifolds.

Suppose (M, g) is a Riemannian manifold. Then TM is equipped
with Sasaki metric ĝ [8], [2]. If X ∈ Γ(TM), then we use XH and
XV to denote its horizontal and vertical lifts to TM , respectively. An
almost complex structure J for TM compatible with ĝ is defined as
follows: J(XH

ξ + Y V
ξ ) = XV

ξ − Y H
ξ [2]. The 2-form ω := ĝ(J ·, ·) is

exactly D∗(ωc) where D : TM → T ∗M is the dual map induced by
g and ωc is the canonical symplectic form on T ∗M [2]. Thus we call
(J, ĝ, ω) the canonical almost Kähler structure of TM . While ĝ has
been studied extensively, little seems to have been done about ω.
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