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STABILITY IN LINEAR VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS
WITH NONLINEAR PERTURBATION

M.N. ISLAM AND Y.N. RAFFOUL

ABSTRACT. A Lyapunov functional is employed to obtain
conditions that guarantee stability, uniform stability and uni-
form asymptotic stability of the zero solution of a scalar linear
Volterra integrodifferential equation with nonlinear perturba-
tion.

1. Introduction. In this paper we consider the scalar linear Volterra
integrodifferential equation

(1.1) x′(t) = h(t)x(t) +
∫ t

0

C(at − s)x(s) ds

and its perturbed form

(1.2) x′(t) = h(t)x(t) +
∫ t

0

C(at − s)x(s) ds + g(t, x(t))

where a is a constant, a > 1. The function g(t, x(t)) is continuous in
t and x and satisfies |g(t, x(t))| ≤ λ(t)|x(t)|, where λ(t) is continuous.
Moreover, h(t) is continuous for all t ≥ 0 and C : R → R is continuous.
We study the stability properties of the zero solution of either (1.1) or
(1.2) and we construct suitable Lyapunov functionals in the analysis.

We point out that if C ∈ L1[0,∞), then the equations (1.1) and
(1.2) become fading memory problems. When a > 1, the memory
term

∫ t

0
C(at − s) ds =

∫ at

(a−1)t
C(u) du tends to zero as t → ∞,

that is, the memory fades away completely. On the other hand, if
0 < a < 1, the memory term never fades away completely; it tends to
a constant as t → ∞. For a = 1, equations (1.1) and (1.2) are the well-
known convolution equations. Many researchers have studied stability
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