COMPUTING POSITIVE FIXED-POINTS OF DECREASING HAMMERSTEIN OPERATORS BY RELAXED ITERATIONS

ALVISE SOMMARIVA AND MARCO VIANELLO

Abstract

We prove global convergence of (under)relaxed Picard-like methods for fixed-point equations $u=A(u), A$: $C_{+}(\Omega) \rightarrow C_{+}(\Omega), \Omega$ being a compact Hausdorff space. The operator A is decreasing and completely continuous, and possesses no pairs of distinct and comparable coupled-fixed points. Infinite- as well as finite-dimensional Hammerstein equations of this type arise in transport theory. As a numerical application, we test Picard, updated Picard, Jacobi, and Gauss-Seidel (under)relaxed iterations on the discrete "decreasing" version of Chandrasekhar H-equation. A comparison with popular Newton-like solvers is also presented.

1. Introduction. In this paper we consider as a model problem the Hammerstein equation

$$
\begin{equation*}
u(x)=A(u)(x)=K N(u)(x), \quad x \in \Omega \tag{1}
\end{equation*}
$$

where $K: C_{+}(\Omega) \rightarrow C_{+}(\Omega)$ is (the restriction of) a linear completely continuous operator, $C(\Omega)$ denoting the space of continuous real functions on the compact Hausdorff space Ω (endowed with $\|\cdot\|_{\infty}$), and $C_{+}(\Omega)$ its positive cone; cf. $[\mathbf{1 6}, \mathbf{1 8}]$. In (1), N is the Nemytskii operator

$$
\begin{equation*}
N(u)(x)=f(x, u(x)), \quad x \in \Omega \tag{2}
\end{equation*}
$$

[^0]Copyright © 2000 Rocky Mountain Mathematics Consortium

[^0]: Received by the editors on February 24, 1999, and in revised form in June, 1999.
 Key words and phrases. Fixed-point equations, normally ordered Banach spaces, decreasing operators, completely continuous operators, coupled fixed-points, (under)relaxed Picard-like methods, Hammerstein equations, Chandrasekhar H equation.

 1991 AMS Mathematics Subject classifications. 65H10, 65J15, 65R20.
 Work partially supported by the Research Projects, "Analisi numerica di equazioni astratte" (funds "ex 60\%," 1997-1998) and "Analisi numerica di modelli integrali e differenziali delle scienze applicate" of the Univ. of Padova, by the Natl. Project "Metodologie numeriche avanzate per il calcolo scientifico" (1999-2000, cofin. MURST 1998), and by the GNIM of the CNR.

