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TWIST POINTS OF A JORDAN DOMAIN

JOHN MARAFINO

1. Introduction. In this paper we will describe how the twist points
of a Jordan domain are distributed about each other. Our description
will indicate in what sense Ostrowski’s condition fails at a twist point.
We first introduce the background material and notation. Many of the
definitions are found in McMillan’s papers.

Let D be a bounded Jordan domain and J its boundary. On D ∪ J
we define the relative distance dD between two points as the infimum
of the Euclidean diameters of curves lying in D and joining these two
points. Any limits involving boundary points will be with respect to
the metric, dD.

Let f(z) be a one-to-one conformal map of the unit disk onto D.
It is well known that f(z) can be extended to a homeomorphism of
the closed unit disk onto D ∪ J . A subset N ⊂ J is said to be a
D-conformal null set if {eiθ : f(eiθ) ∈ N} has measure zero. This
definition is independent of f . Let T ⊂ J denote the set of points
where the inner tangent to J exists. That is, if a ∈ T , then there is a
unique v(a), 0 ≤ v(a) < 2π, such that, for each ε > 0, ε < π/2, there
exists a δ > 0 such that

Δ = {a+ ρeiϕ : 0 < ρ < δ, |ϕ− υ(a)| < π/2− ε} ⊂ D,

and dD(w, a) → 0 as |w − a| → 0, w ∈ Δ.

Let R be those a ∈ J such that

lim inf
w→a
w∈D

arg(w − a) = −∞ and lim sup
w→a
w∈D

arg(w − a) = +∞,

where arg(w−a) is defined and continuous in D. It has been shown [4,
page 44] that J = T ∪R∪N , where N is a D-conformal null set. There
are examples of domains D such that J = R ∪N . See [4, pages 65 67]
and [6, pages 736 738]. The set R is called the set of twist points of D.
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