NOTES ON NEW (ANTISYMMETRIZED) ALGEBRAS

SEUL HEE CHOI AND KI-BONG NAM

ABSTRACT. We define the simple non-associative algebra $N(e^{A_S}, q, n, t)_k$ and its simple subalgebras in this work. We also prove that the anti-symmetrized algebra $N(e^{A_S},q,n,t)_{[k]}^$ is simple. There are various papers on finding all the derivations of an associative algebra, a Lie algebra and a nonassociative algebra (see [3, 5-7, 9, 12, 14-16]). We also find all the derivations $\operatorname{Der}_{\operatorname{anti}}(N(e^{\pm x^r},0,0,1)_{[2^+]}^{-})$ of the antisymmetrized algebra $N(e^{\pm x^T},0,0,1)_{[2^+]}^-,$ and every derivation of the algebra is outer in this paper.

1. Preliminaries. Let N be the set of all non-negative integers and \mathbf{Z} the set of all integers. Let \mathbf{N}^+ be the set of all positive integers. Let F be a field of characteristic zero and F^{\bullet} the set of all non-zero elements in **F**. For fixed integers i_1,\ldots,i_m , we define S_m as the set $\{x_1^{i_1}\cdots x_m^{i_m},x_1^{i_1}\cdots x_{m-1}^{i_{m-1}},\ldots,x_2^{i_2}\cdots x_m^{i_m},\ldots,x_1^{i_1},\ldots,x_m^{i_m}\}$. Throughout the paper, n and t are given non-negative integers, and mdenotes a non-negative integer such that $m \leq n + t$. For any subset S of S_m and $q \leq n$, we can define the **F**-algebra $\mathbf{F}[e^{\pm[S]}, q, n, t] := \mathbf{F}[e^{\pm[S]}, \ln(x_1)^{\pm 1}, \dots, \ln(x_q)^{\pm 1}, x_1^{\pm 1}, \dots, x_n^{\pm 1}, x_{n+1}, \dots, x_{n+t}]$ spanned

$$\mathbf{B} = \{e^{a_1 s_1} \cdots e^{a_r s_r} \ln(x_1)^{d_1} \cdots \ln(x_q)^{d_q} x_1^{j_1} \cdots x_{n+t}^{j_{n+t}} | s_1, \dots, s_r \in S, a_1, \dots, a_r, d_1, \dots, d_q \in \mathbf{Z}, j_1, \dots, j_n \in \mathbf{Z}, j_{n+1}, \dots, j_{n+t} \in \mathbf{N}\}$$

where, throughout the paper, we put $\ln(x_u)^{d_u} := (\ln(x_u))^{d_u}, 1 \le u \le q$. Note that, if $t \geq 1$, then $\mathbf{F}[e^{\pm [S]},q,n,t]$ is a semi-group ring not a group ring (see [17]). We then denote $\partial_{h_1}^{p_1} \cdots \partial_{h_r}^{p_r}$ as the composition of the partial derivatives $\partial_{h_1}, \ldots, \partial_{h_r}$ on $\mathbf{F}[e^{\pm [S]}, q, n, t]$ and $\partial_h^0, 1 \leq h \leq n + t$, denotes the identity map on $\mathbf{F}[e^{\pm [S]}, q, n, t]$ where $0 \leq h_1, \ldots, h_r \leq n + t$

²⁰¹⁰ AMS $\it Mathematics$ $\it subject$ $\it classification.$ Primary 17B40, 17B56. $\it Keywords$ and $\it phrases.$ Simple, non-associative algebra, anti-symmetrized algebra,

bra, m-abelian, derivation. Received by the editors on December 30, 2008, and in revised form on September 7, 2009.