NUMBER-THEORETIC CONDITIONS WHICH YIELD ISOMORPHISMS AND EQUIVALENCES BETWEEN MATRIX RINGS OVER LEAVITT ALGEBRAS

G. ABRAMS

ABSTRACT. For each integer $n \geq 2$ let L_n denote the Leavitt algebra of order n. We provide number-theoretic descriptions of the relationships between the integers k, k', n, n' for which there are isomorphisms and/or equivalences between the matrix rings $\mathbf{M}_k(L_n)$ and $\mathbf{M}_{k'}(L_{n'})$ possessing various properties. Such properties include: isomorphism (unrestricted), induced isomorphism, graded isomorphism and graded equivalence. These results extend the isomorphism results achieved in [2].

Throughout this note K denotes a field. For $n \geq 2$ we denote by $L_K(1,n)$, or simply L_n when appropriate, the Leavitt algebra of order n with coefficients in K. $L_K(1,n)$ is the free associative K-algebra with generators $\{x_i, y_i : 1 \leq i \leq n\}$ and relations

$$x_i y_j = \delta_{ij} ext{ for all } 1 \leq i, j \leq n, \quad ext{and} \quad \sum_{i=1}^n y_i x_i = 1.$$

(See [2] or [10] for additional information about L_n .) $R = L_n$ also may be viewed as the K-algebra universal with respect to the property that $_RR \cong _RR^n$ as left R-modules. Indeed, an important explicit isomorphism $\phi:_RR \to _RR^n$ is given by

$$\phi(r) = (ry_1, ry_2, ..., ry_n), \text{ with inverse } \phi^{-1}((r_1, r_2, ..., r_n)) = \sum_{i=1}^n r_i x_i$$

for all
$$r \in R$$
 and $(r_1, r_2, ..., r_n) \in R^n$.

There has been recent sustained interest in Leavitt algebras, for two important reasons. First, connections between the Leavitt algebras and their C*-algebra counterparts, the so-called Cuntz algebras \mathcal{O}_n ,

Received by the editors on February 22, 2008, and in revised form on September 11, 2008.

 $DOI: 10.1216 / RMJ-2010-40-4-1069 \quad Copy \ right © 2010 \ Rocky \ Mountain \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mathematics \ Consortium \ Mountain \ Mathematics \ Consortium \ Mathematics \ Mathematics \ Mathematics \ Consortium \ Mathematics \ Mathematics$